_awps] Data - I Ll p‘(
Systems e?

Service Manual

P856M/P857M CPU

P

A PUBLICATION OF
PHILIPS DATA SYSTEMS
APELDOORN, THE NETHERLANDS.

PUB. NO. 5122 991 26953
DATE October 1978

Great care has been taken to ensure that the information
contained in this handbook is accurate and complete.
Should any errors or omissions be discovered, however,
or should any user wish to make a suggestion for
improving this handbook, he is invited to send the
relevant details to:

PHILIPS DATA SYSTEMS

SERV. DOC. AND TRAINING DEPT.
P.0. BOX 245, APELDOORN,

THE NETHERLANDS.

Copyright (© by PHILIPS DATA SYSTEMS.

All rights strictly reserved. Reproduction or issue to
third parties in any form whatever is not permitted
without written authority from the publisher.

Paragraph

1.64 Format 1 Instructions (Types T1-T7)
1.65 Addressing

1.67 Operation Sequences

1.68 Microprograms, Microinstructions
1.70 Flow Diagrams

NN NN DD NN
PN . « e v v e e e s e

VOO NG s —

.10

.14

17

.20
.22
.24
.26
.27
.28
.37
.40
.41
.42
.44
.46
.48
.49
.50
.53
.55
.56
.59
.61
.63
.64
.65
.67

Il CPULOGIC

General
Signal Mnemonics
Logic Conventions
GP Bus
Control Lines
Timing Signals
Data Lines
Address Lines
Miscellaneous Lines

Bus Controller
Bus Access
CPU Bus Control
Bus Addressing (MAD Lines
Bus Data (BIO Lines)
Bus Timing Signals
Timeout

Microprogram Control
Microinstruction Addressing
Explicit Address
Flag
Instruction Word
Machine-State Pointer
Move Table/Fault (P857)
RA -- Microinstruction Address Register
Microinstruction Store (Control ROM)
Microinstruction Decoding
Instruction Word Logic
K -- Instruction Register
Instruction Decoder

Data Handling Logic
Data Path
A,D,L Command
ALU -~ Arithmetic Unit
D Selector
L -- Data Register
M -- CPU Working Register
C Selector
Q Shift Register

LI A L L L | | N S O T T T A U B B |
VOO0V VONNNOO D™D DIEWWWW = ——

RPN NNNNNNRNRNNNNNDNDNNDND
]

LiL
N —- O

2-12
2-12
2-12
2-26
2-26
2-26
2-29
2-29
2-29
2-32
2-32
2-33
2-33
2-34
2-34

f’aragragh

2.71 S ~- Address Register/Counter
2.72 A-Bus Selection

.75
.76
77
79
.84
.85
.86
.89
.90

NRNRORNRNRNPRPDRODPRORDRPRRRNNRPDRPORDRORNRNNDRDRNNRDRNRNNRNDRORDRODNODNODNNNDRONDNN,
e e s s s s s & e * & e 8 e s+ e s s @ e+ s e e e = .
0
0

oo

.10

WWWwWwwww

12

Double-Word Trap
IPL -- Bootstrap _ o
P -- Program Register/Gounter:v » .=. -
A0-A15 -- Scratehpad -, 44 @)
PSW -~ Program Status Word- ol
PLR -- Priority Level Register
CR -- Condition Register
GF -- General Flip-Flops
RUNF
ENBF
CPF .
PFF SR
RTCF
PIF
FU
Interrupt Logic
Internal Interrupts
External Interrupts
Compare Interrupts
Sequensor (CPU Clock)
. Operating Modes and Cycles
Internal CPU Operations (AP’ Generation)
Logic Cycle
Scratchpad Cycle
Flag Cycle
Fetch Cycle
Short Execution Cycle (No AP)
GP-Bus Cycles (T6 Generation)
Power Failure, Restart, Resets
Power-On Sequence
Automatic Restart
Power-Off Sequence
Resets
Master Clear

Il OPERATION AND TESTING

Control Panel
Key and Command Operations
Address Operations (P857 only)
Interface Signals
Control Panel Logic
Key Switch
Scratchpad

.\r,

ey ey e D . N g - ‘ :
]

©
o
L]

1]]] 1] |]]]] J] 1 ' t

]]]]] 1 1 []] 1 | O I B |
A B DA DAEDLEBADLEDDMDRDIDEAEDLDNENEEMMMAaEDDAMBAEMLMADODOCLLWLWWOLWWW
VO VOVONNOCOGGOOULMUOUOAEBRDBEBEWRNRNPNONNNNRNNON—=—~0VO0OOVOONNOULWL

TABLE OF CONTENTS

Paragraph
I GENERAL DESCRIPTION
1.1 System Organization
1.4 Memory
1.6 Memory Management Unit (MMU)
1.7 Floating Point Processor (FPP)
1.8 1/O Processor (IOP
1.9 GP Bus
1.11 Central Processor Unit
1.13 CPU Software Registers
1.15 Bus Controller
1.16 Interrupt System
1.17 Internal Interrupts
1.18 External Interrupts
1.20 Interrupt Control
1.21 Interrupt Sequence
1.22 Interrupt Routine
1.23 Interrupt Addresses
1.24 Memory Stack Operation
1.28 Input/Output Channels
1.30 Programmed Channel
1.33 1/O Processor Channel
1.37 Direct Memory Access Channel
1.39 Data Communications Channels
1.40 Clocks
1.41 CPU Timing Clock
1.42 Real Time Clock
1.43 Control Panel
1.46 Testing
1.47 Status
1.48 Data Format
1.49 Double Precision
1.51 Logical Data
1.52 Floating-Point Data
1.53 Character Handling
1.54 Operoting Modes
1.56 User Mode
1.59 Instructions
1.60 Invalid Instructions
1.62 Instruction Format
1.63 Format O Instructions (Type T8)

Rev .2

Page

| B R T T TR B B |

| L I R R R R B |
NV ONNNNOGGTOOBEA_ADDLWLWWLWNDNON —

— - ot ot ot b ot bt d ot ok kot

-
1

1-10
1-10
1-11
1-11
1-11
1-11
1-11
1-11
1-11
1-12
1-12
1-12
1-12
1-12
1-13
1-13
1-13
1-13
1-13

bt

Paragraph Sl LT

3.13 Data

3.14 Initial Program Loading

3.15 Bootstrap Test

3.16 Microdiagnostic Tests i
3.17 Test Procedure, Basic Tests

3.18 Test Procedure, Automatic Modé lGo/No Go)
3.19 Test Procedure, Test-by-Test Mode' -
3.20 Analysing Tested Functions

3.21 Basic Tests e

3.23 Q -Register Test

3.24 Logic Test T1

3.25 Logic Test T2

3.26 Logic Test T3

3.27 Instruction Tests R

3.28 Memory Test M1

3.29 Memory Test M2

3.30 CPU/CU Dialogue Test M3

3.31 Troublieshooting

3.32 Microdiagnostics

3.33 Bus Foilures

3.42 Control Panel

3.43 Bus Blocks Whilst Program is Running
3.34 Cbndition Register Check

3.46 ALU Data Path Check

3.47 Control Unit Fault

3.48 Software IPL

3.49 Low Core IPL

3.50 High Core IPL

3.51 Verificotion of the Low Core IPL
3.54 Simple Test Programs

3.55 Memory Test Program MEMHAN
3.56 Progrom CHECK

3.57 ASR, PER3100, and Display

3.58 Program LINE

3.59 Programs NOEC57 and ECHOS57
3.60 Programs for the MCU3 Card

3.61 Programs for the MCU2 Card

3.62 Program COPY

3.63 Program DUMP

3.64 Producing Programs on Paper Tape

3.65 Using the ASR Punch in LOCAL Mode
3.67 Program ASC4x4

3.70 Program HEXTAP

3.71 Suggestions for Sophisticated Programs
3.72 MINI-IPL Routine

3.73 Program MINDUM

3.74 Program MEM57

Paragraph

VO ONOOL A WN —

A DD ILDEDIADDDDEDDEDDDEDNM

(S INS, NS, IRC, T, INE IS, I I, IS, S IS, S, I, NS, NS S NS NS NS T, R NS NS,

IV MECHANICAL

General

Wiring and Cabling
General
Operator 1/0 Device
Interface Signals
Interrupts and Breaks

Cords

Integrated Circuits
Read Only Memories (ROMS) and PLA

Rules for Connecting Grounds in a System
Grounding for Cabinets and Racks
Logic Ground and Mechanical Ground
Flat Cables
Mains Cables
General Rules for Connecting Shielded Cables
Special Rules for Connecting Shielded Cables
Connecting the Ground Lead in a Cabinet or Rack
Connecting a Ground Lead at the Devices

vV POWER SUPPLIES

General

Inputs

Outputs

Logic Signals

Real Time Clock

Fuses

Rectifier Circuits

+5V Regulator
Voltage Regulation
Overvoltage Crowbar
Overcurrent Detection

+16V Regulator
Voltage Regulation
Overvoltage Crowbar
Overcurrent Detection
Inhibit Signals

+10V Regulator
Connection for an External Battery Rack

-5V Regulator
Voltage Regulation
Overvoltage Crowbar
Overcurrent Detection

Adjustments

Power Sequence Logic

Page

H 1 1

1
— e = = — 0 N0 00O NN NN NN ———

1 1 1 1
N — =00

A EAEDLEDAELDEDRALDAEESEDMDDAEDDDLDN
1

1
—— = 0 OO0 A DDA DLAEWLWWLWUN — —

]
NN — ot s e

1]

(SRR R R RGR RS RGN, N NSNS, RN, N N, I NS S, |
]

5-12
5-12

REV.Z

v

.69 Mechanical Details

Paragraph

5.37 Power-On Sequence

5.41 Power-Off Sequence

5.45 Mechanical

5.46 Top Cover Removal

5.47 Power-Supply Chassis Removal
5.48 Heat-Sink Assembly Removal
5.49 Circuit-Card PO Removal
5.50 Circuit-Card Pl Removal

5.51 List of Components

5.52 Power Supply for Extension Rack E2
5.53 Electrical Description

5.54 a.c. Input

5.55 Mains Transformer Connections
5.56 Rectifiers and Filters

5.60 +5V Regulator Circuit

5.61 +5V Overcurrent Protection
5.62 +5V Overvoltage Protection
5.63 Sequence Logic

5.67 Timing

5.68 Timing Adjustments

5

5

5

5

5

5

5

5

5

Vi

.70 Cabinet Removal and Replacement

.71 Power Supply Sub-Assemblies

.72 Sequence Card (REG E2)

.73 Power Block

.74 Mains Transformer

.75 Mains Filter and Local/Remote Switch
.76 Fan Unit

77 Components

V24 SERIAL CONTROL UNIT

General

Channel and Interrupts
Serial Data Format

CPU interface and Control

6 Operation

O~O~O~O~0~O~O~O~O~O~'O~
o

vi Rev)

Logic Description

Data Path

Character Conversion
Parity

Device Interface
Echo Mode

Page.

5-12
5-13
5-14
5-14
5-14
5-15
5-15
5-15
5-15
5-25
5-25
5-25
5-27
5-27
5-27
5-27
5-28
5-28
5-28

5-28
5-30
5-30
5-30
5-30
5-30
5-30
5-30
5-30

(o 0 o e e N S o AN * ol e A e Sl e)
[
N OO EDEDWONN——

APPENDIX
APPENDIX
APPEND IX

APPENDIX

INTEGRATED CIRCUITS
1/O PROCESSOR (10P)

MEMORY MANAGEMENT UNIT (MMU)

ey e TR

FLOATING POINT PROCESSOR (FPP)- -

e d s oo

e T L,

R e Ly G

A

LIST OF ILLUSTRATIONS Figure

2.3 CPU Bus Control Timing
2.4 Data Handling Logic

2.5 Interrupt System
2.6
2.7
2.8

Figure ’ Page Sequensor Operating Cycles
1.1 PB56M/P857M System Block Diagram 1-2 "BAA f°“’e' (?"/C\fv” Zef“e."ce
1.2 PBS6M/PB57M CPU Block Diogram 1-3 : nstruction Worc -ogic :
1734 Interrupts and Break . . 1-4 2.8BB Microcommand Control-Store Logic
pis a reaks: i
) 38 Break Cable Details 1-5 2.8CC Control Store Addressing
B 2.8DD Flag Select
1.4 Programmed Channe! Transfers 1-8 2.BEE s 9 (CPU Clock)
1.5 Multiplexed 1/O Processor Channel Transfers C1-9 2' 8FF Aeq;e[\sgr d Loc.
1.6 Direct Memory Access Channel Transfer 1-10 2’8GG A’U,M Rom'man ogte
1.7 Opeération Terminology, Flow Diagram Key 1-18 ' ALY, egister .
1.8 CPU Operational Flow and Machine State Pointer 1-19 2.8HH D-Sefector, | -Register
1.9 Control Panel 1-20 2.8]J) ‘ C-Selfector, Q -Register
1.10 1PL 1-20 2,.8KK S-Reg:ster/C?unler, Bus Interface
i Addressing . 1-21 2.8LL A-Bus Selection, IPL, P-Register/Counter
1.12 Interrupt, Restart, Fault, Trap 1-22 2.8MM Scratchpad
1.13 Store, Fetch, Wait 1-23 2.8NN PSW, PLR, CR
1,14 Shifting of Move Tables (P857 only) 1-23 2.5pP oW - GF (Generol Flip-Flops)
1.15 OPC 0 (LD, ST - : ort, Rese
1.16 OPC 1} gAB)) :_gj 2.8SS Interrupt Logic
1.17 OPC 2 (AD,IM) 1-25 2.8TT Bus Controller
1.18 OPC 3f(SU, NG, C2) ; 1-25 2.8UU Logic Delay Circuit Details
1.19 OPC 4 (AN, TM, CM, AC, HLT, INH, RIT) 1-26 3.1 Control Panels
1.20 OPC 5,6 (OR, ENB, LKM, SMD, XR, TNM) 1-26 3.2 Control Panel Block Diagram
1.21 OPC 7 Single Shifts (SL, SR) 1-27 3.3A Control Panel Schematic (Data/Command Half)
1.22 OPC 7 Double Shifts (DL, DR) . 1-27 3.38 Control Panel Schematic (Address Half)
1.23 OPC 7 Multiple Load/Store, Table Load/Store (ML/MS, 3.4 CPU Logic Tested by Microdiagnostics
TL/TS) 1-28 3.5 Microdiagnostics Block Diagram
1.24 OPC 8, 9 1/O Instructions 1-28 3.6 Start and Basic Tests
1.25 OPC 8 Multiplication (MU) 1-29 3.7 Increment Test, -Test-End Display
1.26 OPC 9 Division (DV) 1-29 3.8 Logic Tests (T1,72,73)
1.27 OPC 8,9 Floating Point OP, OP Store, Load Store (FA, FS, 3.9 Memory and CPU/CU Dialogue Tests (Test M)
FM, FD, FSD, FST) P857 only 1-30 3.10 Run CPU Instruction Tests (Test R)
1.28 OPC 9 Floohng Pmm Convertions (FFL, FFX), P857 only 1-30 3.1 Logic Tested by Basic Tests
1.29 OPC 10 (RF, DA, DAR, DAK, EL, ES) 1-31 3.12 Fault Finding Flow Chart
1.30 OPC 11 (RB, DS) 1-31 4.1 P856M/P857M Chassis Configurations
1.31 OPC 12 (LC, SC, FCR) 1-32 4.2A M4 Chassis Installation Data
1.32 OPC 13 (CC, CW) 1-32 4,28 M5 Chassis Instuliaiion Daia
1.33 OPC 14 WER and RTN)-33 4.3 PB56M/857M Basic/Extention Chassis Connections
1.34 OPC 14 Execute (EX) 1-33 4.4 Circuit-Card Connector Uses
1.35 OPC 14 Call Function (CF) 1-34 4.5 CPU Cord Layout
1.36 OPC 14 MVF and MVSU (P857 only) 1-34 4.6 General Purpose Card Layout
1.37 OPC 15 (CI, RER, MVB, MVUS) 1-35 4.7 General Purpose Card Schematic
4.8 TAIE Card Schematic
2.1 P856/857 CPU Block Diagram 2.2 4.9 TAIE Card Layout
2.2 Bus Control Block/Timing Diagram 2-5 Z"o AIE Card Layout
L1 AIE Card Schematic
4.12 Contral Panel Layout
™ ~

NO OO0 »O

REN

Figure Page LIST OF TABLLS
5.1 PB857 Power Supply Block Diagram 5-2
5.2 Mains Input Wiring 5-2 Table
5.3 (sheet 1) Power Supply Inputs and Sequensor Logic -
5.3 (sheet 2) Power Sugglz +5Fi/ Reguloto? g g_g 1.1 P856/85_7 Instruction List
5.3 (sheet 3) Power Supply +16V Regulator 5-9 1.2 Addressing Types
5.3 (sheet 4) Power Supply +18V, -18V, -5V Supplies 3-10 A .
gg gower gequencing Block Diagram 3-13 g; ﬁxisc:‘(;?:s,:?uz:?::l(s:ommond Bits
. ow i - .
5.6 qu;irMZZ:f;r:‘;eBTO':mg g_;‘: 2.3 General Field Command Bit Codes
5.7 Power Supply Assembly Locations 5.22 2.4A Control-ROM Microinstruction Listing P857
5.8 Power Supply Circuit Cards 5.23 2.48 Contrcl-ROM Microinstruction Listing P856
5.9 Heat-Sink Assembly 5-24 2.5A Control-ROM Binary Content P857
5.10 Power Supply Sub Assemblies (E2) 5-26 gga ‘COT"O:TROSA Bugarypf:ntent P86
5.11 Block Diagram (E2) 5-26 25 PLA ROM Mg
5.12 Mains Transformer Connections (E2) 5-27 2‘8 ADL C ajROM
5.13 Timing Diagram of Sequence Logic (E2) 5-29 2'9 A-Bu gm'ma:\.
5.14 Timing Diagram of d.c. Voltages and Logic Signals (E2) 5-29 2"0 List osf Bec.:tcst:zn Loaded in M
5.15 Schematic Diagram (E2) 5-31 2' " CR lnput Condi’:ion: ed in Memory
5.16 Power Supply Component Location (E2) 5-32 2' 12 Se ue’:\sor T6 Generation
5,17 Sequence Card Component Layout (E2) 5-34 2' 13 Re?ets and Clears
6.1 Serial Data Format 6-2 2.14 CPU Signal LIST
6.2 V24-CU Operational States 6-3 2.15 Microinstruction Address Code
6.3 V24 Serial CU Block Diagram 6-4 ,
6.4 V24 Serial Control Unit Detailed Logic Diagram 6-6 3.1 Control Panel Switches and Lamps
3.2 Control Panel Interface
4.1 GP Bus Connector IOM, OB
4.2 CPU-A, Connector 1 (V24 CU)
4.3 Connector 3 (CPU, Mem, 10P, CU)
4.4 CPU-A Connector-5
4.5 Control Panel Connector
4.6 {OP Connectors 4, 5 (Break)
4.7 Extention Connectors AIE/TAIE
4.8 Interface Signal List
4.9A P856M CPU Parts List
4,98 PB57M CPU Parts List
4.10 General Purpose Card Parts List
4.11 TAIE Parts List
4.12 AIE Parts List

A M4 Parts List Guide

.18 M5 Parts List Guide

.1C Regulator Card PO Parts List

RST Card Pl Parts List

J1E Sub-Chassis Assembly Parts List
JIF Heat-Sink Assembly Parts List
G Heat-Sink Sub-Assembly Parts List

[CNC NE N NE NS N
o

viii REV.2

i)

[¥e]

{te}
(el

—_——
L.
o= |

1 1 1 1 1 U 1 U 1] 1] t 1 i

1

N EBDWWWRNNNN —~——0O
A=~ ONONOG~ODOrWON»W

1

NRONRNRPODNONRNRNRNNRNNNNRNNRNONNRNNND

(S E, NS, N0, |
o e e e
G wN

Power Block Parts List

Overvoltage Card Parts List

" Filter and Local/Remote Switch Parts List
Sequence Card Parts List

SECTION |

GENERAL DESCRIPTION

1.1 SYSTEM ORGANIZATION

The P856M/P857M systems consist of a basic central processor unit (CPU) and
various independent elements interconnected via a General Purpose Bus. The
CPU is contained on a single printed-circuit card. The some card includes a
Serial Control unit for connecting an operator's device. Some of the other
system elements are: memory modules, control units, input/output processor
(IOP), the P857 options floating-point processor (FPP) and memory management
unit (MMU).

1.2 A block diagram of the PB56M/P857M systems is shown in Figure 1-1,
All system elements are interconnected via the GP Bus. The P852M system
elements are plug compatible with the P856M/P857M systems and may be
connected via the same GP Bus. P850/P855 control units may also be used

with the 856/857 system; the 850/855 cards ore mounted in their own chassis and
connected to the GP Bus via a bus converter unit, Chassis information and

wiring is-included in Section 1V,

1.3 The PB57M and P856M systems use the same basic logic design and both
systems are based on a single-card CPU ond operator's control unit. The two
systems use different microprogram control, and the P857M performs an expanded
number of functions, including operations with the FPP and MMU options, The
specific logic differences are noted throughout the Logic description, Section |,

Also, the P857M and P856M systems have different standard control panels as

shown in Section 111,

OPERATORS SERIAL
DEVICE cu
CONTROL ':S;M;’
PESTM/PES2M
PAN ress
£ CE:/,:‘A’ZM { CONTROL UNITS |
ON ICES
no(g;zs)ou PROGRAMMED
CHANNEL
s
CONTROL
PBSSM/
PBS7M/PESIM
{ CONTROL UNITS
MEMORY d WITH DEVICES
MANAGEMENT DIRECT
UNIT MEMORY ACCESS
(MMU) - -
Gr
Bus
P856M/
FLOATING PB57M/P852M
....... POINT CONTROL UNITS
PROCESSOR ON DEVICES
(FFP) 1/0 PROCESSOR
.
INPUT
ouTruT
PROCESSOR us
(or) CONVERTER
M ———————
.‘
PasoM/
— Passm
MEMORY R CONTROL
UNITS
SN ————"
Figure 1-1 P856M/P857M System Block Diagram

o
1.4 © Memory
The P856M maximum memory size is 32k words. The P857M maximum memory
size is 32k words with the basic system configuration, 64k words with the MMU
option, or 128k words with the MMU and the M5 chassis options,

Memories

are provided in modular form with up to 16k words per card.

1.5 Memory addressing on the GP Bus lines is by character address, and
usually shown in hexadecimal. CPU logic which deals with memory word addresses
simply places the word code on the GP Bus lines shifted one bit to the left. This
then accesses an even-numbered memory character address. Some of the first

(low numbered) memory locations are reserved for hardware -addressed functions,

as follows:
Address
Decimal | Hexadecimal Function
Word Character
0 000 Interrupt
62 07C list words .
63 07E Trap routine list word
64 080 OVERFLOW
127 OFE . F STACK
128 100)
1.6 Memory Management Unit (MMU)

The MMU is a P857 single-card hardware option which uses Virtual Addressing.
This option extends the main memory from 32k to 128k words, while still using
the 16-bit addressing. The Virtual Addressing system also allows software
extension of main store to backing store, via the Direct Memory Access channel.
The MMU card uses a dedicated slot adjacent to the CPU card. The MMU

is described in Appendix C.

1.7 Floating Point Processor (FPP)
The FPP is a P857 single-card hardware option which performs floating-point

arithmetic operations. The FPP uses a dedicated slot (beside the MMU position)

e o s e anen e . e —_——

- T T — /1

CPU CARD
microrroGRAM] I
CONTROL
INSTRUCTION I
worp
SYSTEM '
STATUS
! . DATA l
- HANDLING l
I uNIt
SERIAL -—- sUs
INTERRUPT
CONTROL UNIT Softwore
Vi) SYSTEM Rogistars CONTROLLER
! a0-s

I

G BUS
) A
r | r— | b
I ! I (I I
MEMORY
conmoL | MoouLEs | ~ R | | A
[SO | : (I —_d Lo J

(P857 Options)

1/9/75

Figure 1-2 P856M/P857M CPU Block Diagram

in the cabinet. Dedicated wiring between the FPP and CPU is used to increase
operating speed for the floating point calculations. The FPP is considered an
extension of the CPU arithmetic section rather than an independent unit. The

FPP is described in AppendixD.

1.8 1/O Processor (IOP)

The 1OP is a hardware 1/O channel that manages direct data transfers between
control units and memory. The IOP multiplexes a number of control units for
memory data transfer (eight CUs with the IOP type A). The |OP card can be
inserted in ony slot of the basic cabinet. The IOP is described in Appendix B .

Additional information about I/O channels is given in paragraph 1.28.

1.9 GP BUS

The General Purpose Bus is a 57-line communicating link between all system
elements, such as the CPU memory modules, 1/O processors, and control units
(Figure 1-1). System elements use the GP Bus on o master-slave basis. The
CPU operates only as o master; the memory, external registers, and most device
control units are slaves; the I/O processor may operate as master or slave (for

CU with integrated DMA channel, the DMA can operate as master or slave).

1.10 The Bus Controller logic in the CPU regulates access of masters to the
GP Bus. Whenever the Bus is free, the Bus Controller scans the masters in a
specific sequence for o Bus-access request. The CPU has direct access to the

memory at the completion of each instruction.

1.11 CENTRAL PROCESSOR UNIT

The P856/P857 CPU card contains the complete central processor, the GP-Bus
control logic, and a serial control unit. The main CPU logic units and data
paths are shown on the block diagram, Figure 1-2. A more detailed block

diagram and complete logic diagrams are provided in Section 11, CPU Logic

description.

— N : .

CHASSIS

1.12 The Data Handling Unit does the processing of all data words accessed rFrR- - "= — — — —
by the CPU. This unit also handles the addressing for both data transfers and ! Serial | BROIN Op-Code Interrupt - cPU
cu) l
instruction-word transfers. The Microprogram Control is a read-only memory L PIF
. . . o 2
and associated logic which controls all CPU operations. < Control CBINTF I
Panel 1
. : | ‘ (INTERNAL) '
1.13 CPU SOFTWARE REGISTERS R Mﬁ«@@ wer)
ower
A scratchpad comprising sixteen 16-bit registers (AO to A15) is directly accessible Suely %——'—_‘ RTCF 4 'NL'(;RG'('%" I
to software. The scratchpad contains 15 working registers (A0 to Al14) and a - —_— ——— l
stack pointer (A15). The working registers are used as an operand for some (EXTERNAL) I
instructions. The scratchpad is located in the Data Handling section of the L ‘[prec o-s
CPU logic and is connected to the operand-A input of the arithmetic logic unit. - INSERN j 11 scur:_
Other units in basic chassis
GP BUS
1.14 A 2-bit condition register (CR) is provided for testing operation results.
This register is also located in the Data Handling section of the CPU logic. SCEIN mc SCEN mc ScN mc INTERRUP
TS
L
CU on DMA CU on CU on S TS
for Programmed 10p =7 orp BR CU:3 3::2
1.15 BUS CONTROLLER Channel Channel Channel BR CU-4 3A23
The Bus Controller scans the GP Bus priority chain for selecting a master, tEEN_N_EQSR}_{k Internal Breaks
provides control for the memory, and gates input/output data between the GP - \), GP Bus S
Bus and the CPU. The Bus Controller is included on the CPU card and is External Braaks Siraps “ 4 MAD) BUSRN
. 518 olalzlsls |
interconnected with the CPU logic. Exg::'sss'g"' 14 (”(.-(.f!—-*ff‘iffff al=llz ‘flgg... N]
' Zlzjzidzizlziz |
1.16 INTERRUPT SYSTEM External Break Cable l i %22 221212
| || @| o) 1op
. . . Bus-R
The Interrupt System is a hardware feature which allows a running program to I Break Requests L:‘m:q::;' '
. . ' ° Addressing
be interrupted by a higher-priority program. The Interrupt System is used for EXTENSION u

CPU logic functions and for control-unit 1/O channel operations. There are

63 interrupt levels, divided into two groups: internal and external. There is

a separate interrupt-request associated with each of the 63 levels.

1.17 Internal Interrupts

The internal interrupts (Figure 1-3A) use the eight highest-priority levels,

- i i -wi from CPU logic functions;
0-7. Four of the internal interrupts are pre-wired g ; CTERAL GREAKS

the other four may be connected to other units in the basic chassis, but are not

Figure 1-3A Interrupts and Breaks

EXTENSION CHASSIS E2 (P852/856/857)

st EXTENSION
CHASSIS €1
Lle
e 54”!‘
’%ﬁ Zo
7.
220
Z%0n
///; ?
’/25“
STANDARD &,;;':Z
BREAK CABLE "/;2:,
...... 7z
e
VLT
NTER L1 7NN o

RN e
f 777777¢17a
r17717c

CABLE

.....
connect

connector 4. They must be
sropped from 1op 'A) 1o bottom
pins (B) of connecror 4.

internol breaks frem CU cords
connactor 3 in this basic chanis
cennect te bartom (B) pine of
connecter 4.

J LAST EXTENSION
CHASSIS EI

MULTIPLE-CHASSIS DETAILS (P852/856/857)

0P

Figure 1-3B Break Cable

w~ ~
< N 0
= 8
S~ A
= <
]CONNECTW 3
CONNECTOR 3 C|AlB|°
)
Breoks frem
AIE/ TAIE in next
All droaks extension chossis
1o IOP in
bosic chassis
\ bl
() e
Lt —] =
¥ CARD BACK
PANEL
| .
CU CARD 7
Breoks frem CU's
n this chasels
Details

REV

usec for CU 1/O channel o\pe.rotions. If any of the levels four through seven are
not used for internal interrupts, they may be used by the external interrupts on the
BIEC lines. The internal interrupts are assigned as follows:
level 0 - Power failure, Automatic restart.
1 - Operator's interrupt (Control Panel or 1/O Console).
2 - Operation Code interrupt (Link to Monitor and Stack Overflow).
3 - Real Time Clock interrupt.
4-7 - Available for other internal interrupts within the basic chassis
(serial CU, FPP interrupts, etc.) or external interrupts on the
BIEC lines.
The four CPU logic interrupts are set into CPU flip-flops as they occur. They
are reset individually by the RIT instruction in the corresponding interrupt

program.

1.18 External Interrupts

The external interrupts (Figure 1 -3) are assigned priorities 4 to 62, although
4 to 7 may be used by internal interrupts. All I/O control units (except the
CPU-integral serial controller) use the external interrupts, including those
control units mounted in the basic chassis. Control units on the programmed
channel use an external interrupt to transfer each word. Control units on all
three channels use the external interrupt to request a status transfer at the end
of a data-block transfer. For control units on the IOP channel, word transfers
are initiated by break requests (BR) to the IOP; the 1OP then makes a Bu;
Request to obtain control of the GP Bus for the word transfer. A break request

is part of the IOP channel (paragraph 1.33) and not part of the interrupt system.

1.19 External interrupt requests are connected to the CPU interrupt logic

via a 6-bit code on the GP-Bus BIEC lines. The priority level of a control

unit is established by a priority encoder (with a set of jumpers) on the CU itself.
Any pending interrupts on the BIEC lines are sampled at the end of the instructions
by the scan-interrupt signal SCEIN. The CU priority encoders sample the BIEC
lines and only the highest priority external interrupt request is coded onto the

lines.

1.20 “Interrupt Control

An Enable Interrupt (ENB) instruction is used fo enable the CPU interrupt system.
The entire interrupt system can be blocked with the Inhibit Interrupt (INH)
instruction. The hardware flip-flops generating the internal inieirupts are reset
individually by the RIT instruction. The hardware that is\generating the external
interrupts is reset by appropriate CIO instructions. At power-on time, and at
every master clear from the control panel:

e the CPU is set to Enable Interrupt mode,

e the current program level is established at 63, and

e all internal and external interrupt requests are reset.

1.21 Interrupt Sequence

The internal/high-priority interrupts (levels 0-7) are sampled at the end of

each instruction execution (except Move Table which is sampled early). If

there is no internal interrupt, and there has been no external sampling within

2 microseconds, the highest-priority external interrupt (which is coded on the
BIEC lines) is sampled. The highest-priority interrupt request is then compared
with the priority level of the running program. If the running plogram is of higher
or equal priority to the interrupt request, the program continues. If the interrupt
request is of higher priority than the running program, the interrupt sequence is
started:

e The current instruction (except Move Table) is completed. For Move
Table, registers are updated to allow resuming the instruction at the
point it was suspended.

. The program counter (P) is stored in the memory-stack location specified
by stack pointer A15. P contains the address of the next instruction
(except for Move Table, where P points to the instruction itself). Al5
is decremented by 2.

e The program status word is stored in the memory location adjacent to (P),
specified by stack pointer A15. Al5 is decremented by 2.

e The Inhibit Interrupt state is set.

e The system User Mode flag is reset (unless already reset).

e The priority level register (PLR) is loaded with the new level number.

e An indirect branch is made to the corresponding memory location
(paragraph 1.23).
e The interrupt routine is executed.
Note: A Return instruction with o pointer other than Al5 can be used
independently of the interrupt routine to switch from any program to

another under a supervisory program control.

1.22 Interrupt Routine
The following operotions must be performed by the interrupt-routine program:
. Some or all of the accumulators (A0 - 15) are saved in the interrupt
memory stack.
e The interrupt itself is treoted, including a RIT, SST, or other instruction
to reset the interrupt signal.
e The accumulators are re-loaded from the stack at the end of the interrupt
routine.
e A Return instruction, referring to stack pointer Al5, is programmed.
During thfs instruction, the contents of A15 are used (with incrementing)
to restore the program counter into P and retrieve the program status

word,

1.23 Interrupt Addresses

The first 63 word locations in memory are used for the interrupt-routine list
words. The CPU interrupt logic generates a direct six-bit word address for the
occepted interrupt. This address code is shifted left one position onto the

address lines to produce the memory character address, as follows:

Interrupt | Address Code from | Bit 0 added, for
Level Interrupt Logic mem. char. add.
0 0 0 0 0 0 0f O 0
1 0 0 0 O 1 0 2
2 0 0 0 0 1 0f 0 4
3 0 0 0 0 1 1 0 6
4 0 0 0 1 0 0 O 8 ’
5 0 0 0 1 0 1 0 A
6 000 1 1 0 O C
etc. to
62 1T 1 1 1 1 0] o0 7C

1.24 Memory Stack Operation

The interrupt system utilizes a memory stack with automatic handling. The
hardware uses this system stack during the interrupt sequence to save the program
status word and the instruction counter of the interrupted program. The software
uses the stack: to save and later restore any other parameters of the interrupted
program; to link a program to a subroutine; and to return to the main program.

The system stack is also used by software for Traps and page faults.

1.25 The stack operates on a last-in first-out basis, controlled

by the automatic updating of stack pointer A15. Load, Store, Multiple Load,
and Multiple Store can be used as stack-handling instructions when their
effective Aoddress refers to A15. The Call Function (CF) instruction is a branch
with automatic saving of PSW and P into the stack. The Return (RTN) instruction

is used at the end of an interrupt routine or a subroutine to restore PSW and P.

1.26 Stack Overflow is signalled by an Operation Code interrupt (level 2,
internal interrupt). This signal is generated by hardwore when the stack pointer
decrements to less than 128]0 (word address) to indicate that the stack is almost

full and to prevent overwriting in the dedicated low address memory locations.

1.27 Additional memory stacks may be used by software, using the scratchpad
accumulators AO to Al4 for stack pointers. These software stacks will not have
the automatic handling and updating like the system stack which uses A15 as

the pointer. A1l references here to the stack pertain to the automatic-handling
stack. All memory stacks may have software limits to stack size established ot

system generation time.

1.28 INPUT/OUTPUT CHANNELS
The PB52M/P856M/P857M systems have three different input/output channels:

e programmed channel,
e multiplex-type 1/O-processor channel, and
e . direct memory access channel,

All 1/O data transfers are via the GP Bus and are timed by the Bus Controller

logic on the CPU card. For all three types of 1/O transfers, the program initiates
control-unit operation with a C1O Start command. The CU must reply with an
interrupt request or a break request (depending on the type of 1/O channel) when
it is ready for the first word (or character) transfer. The data are then transferred
according to the channel type. When a data-block transfer is ended (either
complete or early), the CU signals to the CPU with an interrupt request. The
program must then issue a Send Status (SST) command to obtain the status word

from the CU.

1.29 For transferring a block of data via any 1/O channel, the program
provides the memory address of the first word and the length of the block to

be transferred. During the transfer, these two control words must be updated:
the memory address is incremented to select sequential locations in the data
block; the block length is decremented to determine when the complete block
has been transferred (length = zero). The method of handling this pair of control

words depends on the type of 1/0O channel.

1.30 Programmed Channel

This is an input/output exchange between a CU and memory via the CPU, under
complete program control (Figure 1-4). The exchange is word-by-word or
character-by character at up to 40,000 characters per second. On the
programmed channel, the address/length control-word set is located in program
registers. For each data word or character transferred, the program must access

both of these registers to up-date the control words.

1.31 For an output transfer, a Load Register instruction loads the first word
from memory into the CPU scratchpad register. The CU signals that it is ready
with an Interrupt Request to the CPU. An OTR instruction then transfers the

word from the CPU to the CU, while another Load instruction obtains the next
word from memory. This procedure continues until the last word of the block

is transferred. When the program loads the last data word, its block length is
counted to zero. The CPU then sends CIO Halt to the CU along with the last

OTR data transfer, and the transfer is ended with the status transfer.

1-8 REV.f

<+— TIME

_/

—
OUTPUT TRANSFER
MEMORY CPU cu
C1O START
(Addr) LOAD REG
Dota B I SP REG (Al-Al4) |]
eay- BIECO-5 Int. Request
OTR
! SP REG (Al-Al4) I ""“"'""j:)oa.o
(Addr) == LOAD REG
BIECO-5
int. Request

Data M| sp REG (Al-Al4)

OTR

Doto Tronsfer

-—— TIME

1
Cio HALT - ———
BIECO-5 lnt. Request
sst
K: Status Word
INPUT TRANSFER
MEMORY cPy —
CIO START
BIECO-5 T",—:—R:;u:l—) 4
INR

A
[sp rec wi-arn KT

Dato

(Addr) =

Data

=
I SP REG (A)-Al4) ’

Store Reg

BIECO-5

Int. Request

INR

(Addr)

Data

Store Reg CI0 HALT

BIECO-5

I SP REG (Al-Al4) I

Figure 1-4 Programmed Channel Transfers

Int. Request

SST

“Ystarus Word

Date Transfer

1.32 The input transfer sequence is essentially the same as the output
transfer. The input sequence, however, begins with an INR command which
transfers data from the CU into the CPU scratchpad register. A Store Register
instruction then transfers the word from the scratchpad register into the memory.
1.33 1/O Processor Channel

The Input/Output Processor (IOP) channel manages data transfers directly
between memory and a number of multiplexed control units (Figure 1-5).
CPU registers are not used, and there is no need for program control except
for starting the exchange and testing status at the completion. The exchange
is in blocks at up to one million words per second.

1.34 The 1OP is a hardware option that contains a pair of address/length
control-word registers for each of its CU channels. At the beginning of a
transfer to one CU, the program uses two WER instructions to load this register
pair with the starting address and the block length. The 1OP logic then
provides all GP Bus timing signals to control the data transfers directly between
the memory and the CU.

135 For input or output transfer, the CU signals that it is ready with a
Break Request (BR) to the IOP. The IOP makes a Bus Request to obtain control
of the GP Bus (Figure 1-3), The IOP then sends a simulated INR or OTR
command to the CU to initiate one word transfer. The INR/OTR command is
simulated in that it is generated by the 1OP and is not a programmed instruction.
The 1OP logic updates its control-word registers for each data word. When the
block length is counted to zero, the IOP sends End Of Record (EOR) to the CU
along with the last simulated INR/OTR data tronsfer. The data block transfer

is ended with an SST command and status transfer between the CU and CPU.

136 The 1OP can be loaded with the data-exchange control information

for o number of control units (up to eight for the type-A IOP). The |OP then

multiplexes the exchanges between the CUs and the memory.

-+— TIME

CU(n)

CPU 10P
e
WER Inst, cusl
(for CUn) Mem. Address /
Block Length
) L _
ClO START
r\ N
MEMORY
8R
Sim INR/OTR
(Addr) = Increment Address
Decrement Length
{ b — .
A 2
Dato K27 3 T %
v
8R
Sim INR R
(Addr) Increment Address im INR/OT
Decrément Length
{ b ——
Dote
r\ —
8R
Sim INR/OTR(EQR
(Addr) Increment Address
Decrement Length (=0)
Doto K y
CPU

Interrupt Request (BIECO-5)

Send Status Command

(5ST)

Note -~ This diagrom

Cu, ().
eoch CU,

The 1OP con multiplex up to eight CUs; the operotion shown is

Dato

Dota

STATUS WORD

shows the sequence for transferring a block of doto between memory and g single

thus dujlicated for

Figure 1-5 Multiplexed 1/O Processor Channel Transfers

- TIME

CPU DMA-CU
L]
WER instr. Mem. Address l
Block Length |
ClO START — e '
MEMORY |
. increment Address ‘
Addr Decrement Length READY)
oata ki - T T T T Y oama
[— v l
Increment Address
Addr [~ De:romenv}anglh |(R£ADY)
DATA DATA
Increment Address
READY
Adde Decrement L&gbh h }
A —_— _:-J
DATA KT =0 | DATA
CPU [
- int. Request (BIECO-5) '
ssT |
< ™ STATUS WORD :

Figure 1-6 Direct Memory Access Channel Transfer

J

1.37 Direct Memory Access Channel

The DMA channel manages data transfers directly between memory and a single
high-speed control unit (Figure 1-6). CPU registers are not used, and there is
no need for program control except for starting the exchange and testing status
at the completion. The DMA channel is a hardware channel included as a part

of the high-speed control unit (DMA-CU card).

1.38 At the beginning of a transfer, the program uses two WER instructions to
load the starting address and block length into the DMA control-word register.
The DMA logic then provides all GP Bus timing signals to control the data
transfers directly between the memory and the DMA CU. The DMA logic

also updates the control-word register for each data word and detects when the
complete block has been transferred. The data block transfer is ended with an

SST command and status transfer between the CU and CPU.

1.39 Data Communications Channels

Data communication with the P856M/P857 M system is accomplished with various
Line Control Units operating via the programmed channel or the ’muhiplexed 10P
channel. The Line Control Units connect to the GP Bus in the same manner as
any other control unit cards. The Line Control units are connected to the
communications lines, either directly or via modem interface or repeater units

(following diagram).

/\ /r MODEMS |t
Line or

- S——
~W Control REPEATERS

Unit \ S—
GP \
BUS lt—

Line

3

CPU

Control [>

Unit

v) .

Some Line Control Units used with the system are: 1.46 TESTING

e SLCU Synchronous line control units The P856/7 contains an automatic testing feature in the form of a microprogrammed

e ALCU Asynchronous line control units diagnostic built in to the CPU logic. This automatic microdiagnostic operates

e ALM Asynchronous low speed multiplexers through the control panel to test approximately 70% of the CPU logic. Successful

running of the microdiagnostic indicates that sufficient parts of the CPU function

1.40 CLOCKS for loading of test programs. The automatic microdiagnostic tests and the test
programs are described in Section I1l.

1.41 CPU Timing Clock

The CPU logic timing is controlled by the Sequensor which provides the clock 1.47 STATUS
signals AP, BP, and T1 through T10. The Sequensor is described in Section Il System status is contained in a sixteen-bit Program Status Word (PSW). The use
and operation of the status word is described in Section Il (Paragraph 2.84).
142 Real Time Clock The status word contents are shown in the following diagram.
A Real Time Clock produces an interrupt signal every 20ms. The real-time
. Program Status Word
clock pulse is produced directly from the power supply and is described in
PLR CR GF
Section V.
OII]2 l3 l4 !5 0 !l RUNJ ENB[CPF' PFF] RTCFI PlF]' I FU

1.43 CONTROL PANEL ,, ‘ 1 Interrupts | /

. “1'=User Mode
1.44 The standard control panel for the PB56M system is the same as for the 0 =System Mode

PB52M. This panel is directly interchangeable between the two systems. The

Extended control panel used by the PB57M is available as an option for the 1.48 DATA FORMAT

P856M system. Description and operation of the control panel is provided in The data are handled in 16-bit words with 15 magnitude bits and bit 0 as a

Section 11,
sign bit, Bit 1 is the most-significant data bit. The data word is handled in

the CPU and on the GP Bus with negative logic: o logic | is a low level (0V)

1.45 The standard control panel for the P857M system is the Extended Control and a logic 0 is a high level (+5V).

Panel. This panel has, in addition to the standard Data ond Control facilities,

complete Addressing facilities, including the ability to stop on preset addresses. Dot Word

The Data/Control half of the panel is the same as the P852M/P856M control Bit l 0 l !]51

panel, but with the addition of a TEST position on the key switch for performi ! ! ' i
o ‘) - Y P ng . Sign Bit Magitude Bits Least-significant bit

avtomatic microdiagnostic tests. Description and operation is provided in 0 = positive

Section I, ’ I = negative

REV 1-11

1.49 Double Precision

Double precision is obtained by utilising two successive words to obtain 30
magnitude bits. The sign bit and the 15 most-significant bits are in the first
word; the 15 least-significant bits are in the second word. Bit 0 of the second

word is not used, and is always zero.

1.50 Double precision is used for the product of the multiplication of two

single-precision words, and for some other operations.
1st Word
Bit: O 1 15

Ls |0 |

Sign Bit t Most-significant Magnitude Bits
Most-significant Bit

2nd Word
Bit: O 1 15
oL]
not used Least-significant Magnitude Bits]

Least-significant Bit

1.51 Logical Data

Logical data, such as the condition of sixteen binary indicators, can be stored
in a single data word. This type of data is generally not treated arithmetically
by the program but logically by means of boolean operations such as AND,

OR, and Exclusive-OR. In this case, bit 0 of a word is not used as a sign bit.

1.52 Floating-Point Data
Real, floating-point numbers are contained in three successive words. The
mantissa is stored in the first two words as a double-precision integer. The

third word contains the exponent, represented as a single-precision integer.

Ist Word

Bit: 0 1 15
I S l Mantissa J
Sign Most-significant Bits (1-15)

i-12 REV.I

~—
2nd Word
Bit: O 1 15
[0 l Mantissa ‘!
Not Used Least-significant Bits (16-30)

3rd Word
Bit: O 1 15

L S] Exponent]
Sign

1.53 Character Handling
Character handling is performed by some instructions. The right character of

a word is the least significant (bits 8-15) and the left character is the most

significant (bits 0-7).

1.54 OPERATING MODES
The CPU can operate in two basic modes: System Mode or User Mode. The

mode is specified by bit 15 of the program sfatus word (0 = systet; 1 = user).

1.55 System Mode
The System Mode is reserved for the monitor program and system programs. In the

System Mode, execution of the complete instruction set is allowed. This mode

assures the system resource allocation, protected by the following privileged instructions:

e Control Instructions which modify the CPU state:
HLT -- Halt
INH -- Inhibit Interrupt
RIT =-- Reset Internal Interrupt
e All 1/O Instructions:
ClO, OTR, INR, SST, TST
e External Register Instructions:
WER, RER
. (P857M) MMU -related instructions, Extended Load or Store, and

Segment Table Load or Store:

ELR, EL, ESR, ES,
TLR, TL, TSR, TS
e Some other instructions are reserved for System Mode when they

modify the contents of the stack pointer (A15). Refer to Table 1-1.

1.56 User Mode

This mode is reserved for the user program execution. |f a program in User
Mode attempts to execute a privileged instruction, a Trap routine is performed:
the program parameters (P and PSW) are saved in the stack, and the program

branches to the address contained in memory location 7E.

1.57 When a program running in User Mode needs system allocation, a
Link to Monitor (LKM) instruction executes a call to the monitor which sets the

CPU to System Mode.

1.58 When a program running in System Mode is complete, and ready to
allow user programs to run, either a Set Mode (SMD) instruction or a Return
(RTN) instruction with R2=15 can be used. The User-Mode indicator in the
PSW is then set to 1.

1.59 INSTRUCTIONS
The P856/857 instruction set is divided into ten groups:
. load and store
e arithmetic
o logical
e character handling
e branch
. shift
e table handling
e control
e input/output
e external transfers

Table 1-1 lists the instructions and indicates the operating flow diagram for

each instruction. The instruction formats are described in paragraph 1.62.
Instructions are specified by addressing mode as well as the op-code. The

addressing mode is described in paragraph 1.65 and listed in Table 1-2.

1.60 Invalid Instructions
An invalid instruction code initiates a Trap microprogram (paragraph 1-55,
Figure 1-12). The program must determine what action (such as interrupt) to

take following a Trap.

1.61 Some P857 instructions require the Floating Point Processor (FPP) or

the Memory Management Unit (MMU). Both of these system extensions are
optional. |f the FPP is not present, the corresponding instructions initiate the
Trap. |f the MMU is not present, the corresponding instructions give no significant

result when they are executed.

1.62 Instruction Format
There are two instruction formats, indicated by bit 0 of the instruction word:
e Format 0 Constant handling instructions,

o Format 1 Memory reference or register-to-register operations.

1.63 Format 0 Instructions (Type T8)

o] orc | CONSTANT
0

1 4 CND 8 15

OPC : Operation code

R3 ¢ Register (scratchpad A0-A7) on which the operation is performed.
CND : Condition for relative branching (when specified by OPC).

1-13

Table 1-1 P856/857 Instruction List

e

Flow L/s |Add
R . ¢ re
?znagram Mnemonic |OPC Bit 15) Typess Instruction Name
Arithmetic Instructions

DSK 11 0 T2 Double subtract with constant

30 DSR 11 0 T1,3 | Double subtract reg/reg
DS 11 0 T4-7 | Double subtract

28 FFL 9 0 Ti Integer to floating point (FPP)
FFX 9 1 Ti Floating point to integer (FPP)
FADR 9 0/1 T3 Floating-point addition/reg (FPP)
FAD 9 0/1 T4-7 | Floating-point addition (FPP)
FSUR 9 0/1 T3 Floating-point subtract/reg (FPP)

. FSU 9 0/1 T4-7 | Floating-point subtract (FPP)
FMUR 9 0/1 T3 Floating-point multiply/reg (FPP)
FMU 9 0/1 T4-7 | Floating-point multiply (FPP)
FDVR 9 0/1 T3 Floating-point divide/reg (FPP)
FDV 9 0/1 T4-7 | Floating-point divide (FPP)

Logical Instructions

ANK 4 0 18,2 | Logical AND with constant (R3#0,R170)

19 ANR 4 0/1 T1,3 |Logical AND reg/reg (R1£0)
AN 4| 0/1 | T4-7 | Logical AND . (R170)
ORK 5 0 78,2 | Logical OR with constant (R370,R17#0)
ORR 5 0/1 T1,3 | Llogical OR reg/reg (R17£0)

20 OR 5 0/1 T4-7 |Logical OR (R1#£0)
XRK 6 0 18,2 | EXclusive OR with constant (R170)
XRR 6 0/1 T1,3 | EXclusive OR reg/reg (R1£0)
XR 6 0/1 T4-7 | EXclusive OR (R170)
CWC 13 X T8 Compare word to short constant

32 CWK 13 0 T2 Compare word with constant
CWR 13 0/1 T1,3 | Compare word reg/reg
cw 13 0 T4-7 | Compare word

37 CIR 15 0/1 T1,3 | One's complement reg/reg
Cl 15 0/1 T4-7 | One's complement

19 ™ 4 1 TI Test mask

20 TNM 6 1 Tl Test not mask

19 CMR 4 1 T3 Clear memory/reg
CM 4 i T4-7 | Clear memory

Flow L/s |Add
I])i:agram Mnemonic | OPC ®it 15) Typ;ess |n§truction Name
Load and Store Instructions
LDK 0 0 78,2 Load constant
LDR 0 0 11,3 Load reg/reg; update stack pointer
15 LD 0 0 T4-7 Load register
STR 0 1 T3 Store reg/reg; update stack pointer
ST 0 1 T4-7 Store register
MLK 7 0 T2 Multiple load constant
MLR 7 0 T3 Multiple load register
23 ML 7 0 T4-7 Multiple load
MSR 7 T3 Multiple store register
MS 7 T4-7 Multiple store
ELR 10 0 T3 Extended load register (MMU)
EL 10 0 T4-7 Extended load (MMU)
29
ESR 10 1 73 Extended store register (MMU)
ES 10 1 T4-7 Extended store (MMU)
Arithmetic Instructions
ADK 2 0 78,2 Add constant
ADR 2 0/1 11,3 Add reg/reg
17 AD 2 0/1 T4-7 Add
IMR 2 1 T3 Increment memory/reg
IM 2 1 T4-7 Increment memory
SUK 3 0 78,2 Subtract constant
SUR 3 0/1 11,3 Subtract reg/reg
SU 3 0/1 T4-7 Subtract
18 N GR 3 1 Tl Negate register
C2R 3 1 T3 Two's complement/reg
C2 3 1 T4-7 Two's complement
MUK 8 0 T2 Multiply with constant
25 MUR 8 0 71,3 Multiply reg/reg
MU 8 0 T4-7 Multiply
DVK 9 0 T2 Divide with constant
26 DVR 9 0 T1,3 Divide reg/reg
DV 9 0 T4-7 Divide
DAK 10 0 T2 Double add with constant
29 DAR 10 0 T1,T3 | Double add reg/reg
DA 10 0 T4-7 Double add

1-14

Flow Flow
L/S |Address . L/S |Address .
. . ; ; t N
I‘)‘mgrom Mnemonic |OPC ®it 15) | Type Instruction Name :)'mgram Mnemonic |OPC ®it 15)| Type Instruction Name
Bits
Character Handling Instructions Shift Instructions 8| 9110
ECR 12 0 T1 Exchange character reg/reg (R17#0) 22 DLN 7 0 T8 Double left, normalize 1{0]0
LCK 12 0 T2 Load character with constant (R170) DRN 7 0 T8 Double right, normalize 1101
LCR 12 0 T3 Load character/reg (R170)
31 LC 12 0 T4-7 | Load character Table Handling Instructions
SCR 12 1 T3 Store character/reg (R170) 36 MVF 14 0 T8 Move table forward 0{ojo
SC 12] T4-7 | Store character 37 MVB 15 0 18 Move table backward 0{0|0
CCK 13 1 T2 Compare character/constant (R170) 36 MVSU 14 0 T8 Move table, system to user (MMU]1|0]0
32 CCR 13 1 T3 Compare character/reg (R170) 37 MVUS 15 0 T8 Move table, user to system (MMU]1{0{0
CcC 13 1 T4-7 | Compare character (R170) Bits
Control Instructions glofohith2hali4is
Bro.nch Instructions HLT 4 18 Halt ohihibilihalats
AB 1 0 78,2 | Absolute conditional branch .
16 ABR 1 0/1 T1,3 | Absolute conditional branch to reg 19 INH 4 T8 Inhibit interrupt BULURIURL
ABI 1 0 T4-7 | Absolute branch RIT 4 1 T8 Reset internal interrupt |11 DA 1
29 RF 10 0 T8 Relative forward conditional branch ENB 5 T8 Enable interrupt 0{1(0({0f{0{0|0|0O
30 RB 11 0 T8 Relative backward conditional branc ;
20 LKM 5 T8 Link to monitor ojojofojofi|ofo
CF | 14 1 T2 Call function (direct) (R170)
35 CFR 14 1 T1,3 | Call function/reg (R170) SMD 3 18 set mode 0j0j0jojoj0j0}1
CFl 14 1 T4-7 | Call ti i R1#0
oll function (via memory) (R170) Input/Output Instructions (R37#0) 8l9
33 RTN 14 0 T3 Return (R1=0) 1o 8 X T8 C 1170
ontro DA#0) |1
EXK 14 T2 Execute constant (R1=0) - (DAZ0) i
34 EXR 14 T1,3 | Execute/register (R1=0) OTR 8 X T8 Output from register (DA#0) |0|n
EX 14 T4-7 | Execute (R1=0) = 24 INR 9 X T8 Input to register Oln
its
Shift Instructions 8[910 SST 9 X T8 Sense status 11
SLA 7| X T8 | Single left arithmetic (R370) | 0{0|0 151 o1 X T8 | Test status 110
SRA 7 X T8 Single right arithmetic (R37#0) | 0]0]1 £ T fer |
t t ti
SLL 7 X Te Single loft logical ®370) |0l 1]0 xternal Transfer Instructions
N SRL 71 x 18 | Single right logical (R370) {of1]1 g; ;’Vi’* 141 X T8 | Write external register (R3#0)
sLC 7 ” T8 Single left circolar ®370) 111110 | E 15 X T8 Read external register (R3#0)
SRC 7 X 18 Single right circular R370) |1]1]1 FLDR 8 0 T3 Floating-point load/reg (R1=2) (FPP
SIN- | 7| 0 | T8 |Single left, normalize (R370) | 1]0]0 27 FLD 81 0 | T4-7 |Flooting-point load (RI=2) (FPP)
SRN 7 0 T8 Single right, normalize (R3#0) | T{0]1 FSTR 8 1 13 Floating-point store/reg (R1=2) (FPP)
DLA 7 X T8 Double left arithmetic (R3=0) {0]0{0 For 8 ! T4-7 | Floating-point store (R1=2) (FPP)
DRA | 7| X | 18 | Double right arithmetic (R3=0) | 0|0]1 TLR 213 | I3 |Segment table load/reg (R1=0) (MMU)
- DLL - x T Double Ieft logical w0 Tol1lo 23 TL 7 0 T4-7 |Segment table load (R1=0) (MMU)
DRL 7 X 18 Double right logical (R3=0) | o]1|1 TSR 7 1 13 Segment table store/reg (R1=0) (MMU)
DLC 7 X T8 Double left circalar (R30) o TS 7 1 T4-7 |[Segment table store (R1=0) (MMU)
DRC 7 X 18 Double right circular (R3=0) 1] =P857 only !

I-15

CN
5 6D7 Branch
0 n n if CR = bits 6,7
Il n n if CR # bits 6,7
1 1 unconditional

CONSTANT: An 8-bit, positive constant, branch displacement, or

OPC extension.

1.64 Format | Instructions (Types T1-T7)

T

| V] oec] [Mo [re [5]
0 ! 4{ CND l |9 10 11 14 15
5 7 8
orC Operation Code
R1 Register (scratchpad A0-15) on which the operation is performed:
bit 8 =0: A0-7
bit8 =1: A8-15
CND : Condition for absolute branching (when specified by OPC).
(conditions same as for format 0)
MD Addressing mode (Table 1-2).
R2 Register (scratchpad A0-15) of 2nd operand or address of 2nd
operand:
bit 14 =0 : AQ0-7
bit 14 =1 : A8-15
S Store bit for memory reference instructions:
0 = store result in Rl
1 = store result in memory
1.65 Addressing

Format O instructions (type 8) address the operand with the R field; no second operand
is used. Format 1 instructions address the first operand with the R1 field; the second

operand is addressed according to the addressing type, T1-T7, as listed in Table 1-2.

1-16 K

EV .1

e

Table 1-2 Addressing Types

Format 1 (K0O)

MD R2 Effective
Type 910 Address of
(K9 K10) |1 12 13 14| Operand
Tl 0 0 X X x x R2 Register-to-Register.
R2 contains the operand .
T2 0 1 0o 0 0 o P Long Constant.
(0R2) The foH‘owir.\g word(after the
instruction)is the operand.
13 0 1 non-zero (R2) Address in Register.
%2 R2 contains the address (AO-
) A15) of the operand.
T4 1 0 0 0 0 o (P) Address in Next Word.
The following word is the
operand address.
15 1 0 non-zero (P) + (R2) | Indexed Address.
) The following word, indexed
by (A0-A15), as specified by
R2, contains the operand
address.
T6 11 0o 0 0 O {J)] Indirect Address.
The following word specifies
the location containing the
operand address.
17 11 non-zero [(P) + (R2)]1| Indirect Indexed Address.
5R3 The following word, indexed
(0R2) by (AO-A15), specifies the
location containing the
operand address.
T8 — Short Constant.
Format 0 (K0O) No 2nd operand is used.
1.66 All addressing uses a 16-bit address word, although only the 15 high-

order bits are used for memory selection and for word-handling instructions. For

character-handling instructions, the least-significant address bit specifies the

character, as follows:

bit 15 = 0: left character

; bit 15 =1:right character.

1.67 OPERATION SEQUENCES

1.68 Microprograms, Microinstructions
CPU operations are controlled by microinstructions (u Inst) located in the
Microinstruction Store (Control ROM). Each microinstruction comprises a

single 48-bit word divided into 14 command fields.

1.69 A microprogram performs one part of an instruction (e.g. indirect
addressing or execution) or one operating sequence (e.g. Initial Program

Loading or an Interrupt routine). The microprogram may consist of a single
microinstruction (Fetch, SUK, etc.) or a group of microinstructions accessed

in a specified sequence. This sequence may vary according to conditions specified
in the microinstructions. An example of microinstructions and microprograms

grouped into an instruction is shown in Figure 1-7, Operation Terminology.

1.70 Flow Diagrams

General operational flow for the CPU isishown in Figure 1-8, Detailed flow
diagrams for each block are referenced on Figure 1-8 and, for the execute-
instruction sequences, in the instruction list (Toble 1-2). A key to the flow

diagrams is provided in Figure 1-7.

1.71 Figure 1-8 shows the general sequence of computer operations. The
computer continuously performs microinstructions. The sequences in which the
microinstructions are performed are determined by microinstruction addressing

(paragraph 2.26).

1.72 If no program is running and the computer is not being operated, it
cycles through the Idle loop. RUNF is described with the PSW, paragraph 2,90,
Machine-state-pointer control is described with the microinstruction aoddressing.
RUNF is set by pressing START on the control panel. If the control panel is

used (Section I11), PUP is set in the CPU (logic diagram CC) and the operation
now cycles through the control-panel path, beginning with microinstruction /010.

Either automatic restart or IPL may be initiated through this path.

1.73 If RUNEF is set and the control panel is not selected, the machine-state-
pointer tests for interrupts, and executes the interrupt routine if necessary. KRY
is set when the K-register is loaded with the instruction word. KRY is set by
the Fetch command during the Fetch routine, some control-panel routines, EX

instruction, and some tests.

1.74 Before KRY is set, the computer loops directly to Fetch to load the
instruction word into the K register. The instruction must be requested from
memory during a preceeding microinstruction. When an instruction is loaded,

KRY is set and the PLA addressing mode is used to select the next microinstruction
address. For most instructions, the addressing routine is used to obtain the operand.

Instruction word addressing and decoding is described in paragraphs 2.37 and 2.48.

1.75 Repeated microinstructions of a routine are selected with explicit
addressing (the microinstruction includes the address of the next microinstruction).
Microprogram decision tests may modify the explicit addressing with a flag bit

(SNA Flag mode). At the end of a microprogram routine, a Bus Request is made

for the next instruction word and the Fetch routine is then used to load the instruction,

If the machine state pointers allow (program still running, no control-panel
operations or interrupts pending), the computer selects the next microinstruction

address via the PLA addressing, and continues with the next microprogram.

1.76 Data paths are shown in Figures 2-1 and 2-4. The microinstructions
within each microprogram or routine control the data paths and control the operations
performed on the data. These controls are described (in Section Il) for each of the
logic blocks shown on the data-path diagrams. The data handling is also listed on
the microprogram flow charts with terminology such as: M + 2 = M, where the

data in the M register loops through the data paths shown on Figures 2-1, 2-4 and

back to M, with a left-shift being performed enroute to produce th.e +2.

REV |1 -1

Example of one instruction (SC-Store Character) using addressing mode T6 (indirect)

1-18

MICROPROGRAM
FETCH

MICROPROGRAM
ADDRESS
ROUTINE

MICROPROGRAM
EXECUTE
SC INSTRUCTION

. MICROPROGRAM

STORE-RESULT
ROUTINE

l

[_Microinstruction 016

]

PLA Addressing Mode

Microlngteuction 07

Microinstruction 05
Microinstruction 11

PLA Execution Mode

l Microingtruction OCC l

Microinstructi FE

Part A

030

Fetch

|suk

Addrening SOURCE: Begin this microprogram ofter Fetch (Figure |
or Address Routine (Figure 1-11).

PLA Addressing Mode NEXT ADDRESS given by PLA in Addressing Mode

SuKe \
NAME of instruction
(Subscript p = program counter, AQ)
‘PLA Execution Mode
NEXT ADDRESS given by PLA in Execution Mode
sU SUp c2 Sus
NGR
Hexadecimal Address of microinstruction word in the
control ROM.
035 —
NEXT ADDRESS given by Flag (FNU)
Double Line: this microinstruction word also used by
another microprogram.
! v

F: Next instruction is pre-fetched in this microinsiruction

[F word,

Machine 1-1%Store DESTINATION: After this microprogram, go o the Store

State Result Result microprogram or find the NEXT

ADDRESS via the Machine State Pointer.
Address Type Designations
T1 (2nd Operand in R2): 12-7
RT) RT2-7 Result = R1

RTIP - R2=0, thus operand in P.
RTID - Double Length; (R2) = Q, (R2¢]) =M
RTIDOP - Double Length and R2=0

RT2-7S - Store; Result = memory
RT2-7C ~ Constant

T3A — R2 / AIS

T38 — R2 = AlS

Part B

Figure 1-7 Operation Terminology, Flow Diagram Key

MACHINE STATE POINTER CONTROL PANEL INTERRUPTS OPERATION

. PANELDY
1
IR 9
1
010
KRY 1 (after FETCH) ‘
(Implicit)
(Addressing)
0
KRY CONTROL PANEL KRY 0
(PLA ADDRESSING MODE)
1-9) 1
005
P-2 =P
$-2 =§
KRYZO
03E 02€ 015 014 003 001 OFF SHIFT ADDRESSING
ROUTINE
PREPAR- 1-11
oL AUTOMATIC INTERRUPT NOFLON | I NOJuMp A ATION (Implici)
. 004 1-10 RESTAN 1 1-12 = Ll (Addressing)
2.5YS =Q (LA EXECN MODE)
IDLE 0 1 ((Explicn))
Addressing
LOOP
007 006
MEM =M, L P =ML
. , 18 FORMAT
MICRO. MICROPROGRAM EXECN FLAG
‘ , PROGRAM Mode
’ EXECUTION END | OPERATION
000 IDLE l
M - |
wBus
OFE 077
017 STOR
3
L = BIO RESULT WAIT
GIDLE 1-1 1-13}
YES Section 111
7] (Section 111) 016 INSTRUCTION
0 . FETCH LOADED FROM
1-13] MEMORY
Figure ’

8 CPU Operational Flow and Machine Stote Pointe

REV. 1-19

Machine State

{with RUNF = 1)

AUTO-
RESTART |y -}
(02€)

1-20

CONTROL PANEL

CPU lnput from CP:

02F Ké
01 23 12131415
1 Qo 0
] 03F z2z22Z
SLQ 220 o«
RBUS o EE 2 =00,
GBOK 0123 12131415
v _of g0 D)
04F 04F
KEY - L, M sLQ (1) Previous displayed data is saved
vggg’: GFRUNZO (2) K register content is not an instruction
08D l
BIO = Mem
GFRUNZO
27]
2x5YS = Q
Gsce

SEQBIO
GFETCH;RBUS

KEY = BIO
810 = RCP
SEQBIO -
RBUS
013 | LIE
A0 =P,S (RCP) =M
GFKYZO

@m (03E)

‘ IDLE (000)

Figure 1-9 Control Panel

REV.

word

w Control Panel
3E

: Quarters counter

m P : ROM word counter (4bits)
Q-
S

OAQ
0 -3 : RAM word address counter (16 bits)
IPLFZO
ENEFZO IPL routine loads bootsirap program into memory location /7000
FUZO theough ADTE.

!
I QA
M/2 - M
P-2 =P
quartet
M+ IPL = M, L
WMEM
0 Qo0) 1
08F 1 1 _Q8E
M/2 =M L = Mem
sLa $+2 -5
P w=aly
I GCRFNU
0 FNY 1Y
024 28
clear M 1000 -— M, Q P-s
sﬂ“ GBOK
quart, counter RBUS
Fetch (016)
NOTE:

- Bootstrap listing in Toble 2 - 10
«Loading routine in Paraograph 3,14

Figure 1-10 IPL

[ADDRESSING ROUTINES TYPE T1 |

!E —|3’ Fetch (016)

ll -13’ Fetch (016)

RT1 RTIP Function
(R2)=M,Q
083 093
(R2) = M,Q (P) =M, Q
For DAR and DSR
Double length: least significant bits in M 1(R2)=Q
most significant bits in Q [(R2+1)e=M
RTID RTIDP
087 097
(R2) =-Q (P) =Q
GCTLD CTPI N
o8
e
‘ ;
096
(CT)) =M
(1) Note: When we have OR2, CTYSPA is not done;
b|.n in Fetch 16 is loadad in CT, therefore
with the CTP1 of 097 Al is actually oddressed.
EXECUTE

RT7

RT6

[ADDRESSING ROUTINES T2 - 17]

(for T38 and T3BM see OPC! and OPC7)

RT4

RT5 RT2 RT3
062 072 32 042 2 022
Mem = M Mem =S Mem =S Mem = M Mem = M, Q (R2) =S
P+2 =P P+2 =P P+2 =P
BUSR BUSR $+42 =S BUSR
103 102
(R2HM = § (R2)+M =S Mem = M,Q
BUSR BUSR [
RT7S RT6S RT4S RT5S RT2S R3S
063 073 053 43 033 023
Mem = M Mem =S Mem = § Mem = M Mem = M, Q (R2) =S
. P+2 =P P42 - P P+2 =P
BUSR BUSR BUSR
108 A 117
(R2)+M =5 (R2)4M -=§
BUSR BUSR Mem = M,Q
R17C RT6C RTAC RI5C RT2C RT3C
0EJ OF3 0D3 0C3 083 A3
Mem = M Mem = § Mem =5,Q Mem = M -
BUSR P42 - P P+2 = P Ps2 = P (R2) =5,Q
112 111
(Rz);\.?‘s; s ‘(R2)+M = $,Q
‘ i

Figure 1-11

Addressing

-15
3

EXECUTE

1-22

INTERRUPT AUTOMATIC RESTART PAGE FAULT (P857 only) TRAP
1-8 Machine State 1-8 | 1-9 IC.Pnncl
FF
No, A =-Q
1FE GAEXL Under long format execute
(DWIF, logic Fig. LL)
2x2 -Q - Q0-=0 l Qo=
2x2 -A 12F | i
002 GCTLD 2-2 =M ;-2 - P
3z
2€ oA |
INTAD = M PSW = M
GCSEL GFSYS
PA AULT STA :
ors KRY = 1] l GE FAULT STACK
014 KRY =0 0CB 008 AlS
TWO "2" = M O0EA
PM2 [1wo 2 = m] [orsvs] AlS ~5 o -2
KRYZ0 WEXM 0 l s I INTAD] 0 210 - Q -
GBOM P-2 =P
| BUSR PSW
]] pe OEF l Updote stack pointer
027 0DD Al5-M = A15,5 SQ =:° flow d
' LQ tock overflow detection
Al5-M = AlS5, S PM"—ML.'“ GFSSTOV possing to INH, MASTER
STOV Q-m and in Write Mode.
§5-2 =5
061 l WMEM 0F 2 l
BUSR)
PSW oM ENBF20; Fuzo | © =80
GFSYS [PSW = L
S$+2 S QE2 $+2 = §
| L = Mem WMEM ,
1 M+2 = M BUSR
Mot §5-2 =S sLQ
WMEM WEXM
BUSR GBOM
BUSR PEA | Store PSW
| M = 80
0E8] St = Logical segment address L = Mem
L = Mem *INTAD =M. MR INTAD = Progrom Level coded on MMU P =L
P =L s M.. 'A'"I's [= Program counter value of the $42 =S
INTAD = M “55'"(07 not completed instruction Q - M
GCSEL RBUS WMEM
SJV?AETAS SEQBIO BUSR
BUSR] l
OFB Store P
QEs___L___ 0CD L = Mem S = 80 passing to "Read"”
L = Mem M/2 = § M =S
M/2 =S GFKYZ0
| okc_ |
- S - 7¢
$-2 =S
0C2 BUSR
M crossed = PLR
GFPLR
BUSR
0CA
Mem =P, S
BUSR

REV .1

FETCH (016)

Figure 1-12

Interrupt, Restart, Fault, Trap

STORE
RESULY

Before Store Execute See
Rewlt do Fig. 1-8

WMEM

FETCH

OFE
L = Mem
P =S5
BUSR N

l

014

Mem =K, M righ, Q righ

4 FRUNZO if RUN on pr. coin

P+2 =P

crz1e St2S

SEQBUS GFETCH
077
3A
3A
3A
38

WAIT

€10, OTR,INR, TST,
ST, RER, WER,
ENB,SMD, LKM

Execute

M/2 =M
GCRENU 2,070 u$
0(FNU DY
38
PS5 ’
M FNU
2 0 (Refer to
1 0 paragraph
[] 2.99)
0 1
- S

Figure 1-13 Store, Fetch, Wait

TABLE SAVE

1-36 MVF
I-37 mMve
Hardware Address {Para 2. 41)
I T 1 |
MVF MVF MVE MVB
Write Read Write Read
1£8
Al + M = A}
P+2 =P
- GCTLD m 1F9 |
L 1A Al - M = Al
P+2 =P
GCTLD "
L
1F8
P o-—M
m GCTLD
in M: Length minus 2
<2
1C4
M - R2 Note (1) GCTLD Permits PAFZO
Q =M
0 (IR) 1
Page Fault Interrupt
10f 10E
2x2 =-Q] l A0 -M =P ‘] decrement P
Page Fault Interrupt
Figure 1-14 Table Save (P857 only)
N o
REV

23

Fetch

PLA Addressing Mode

LDK

LDKp RT38 (LDRI + LDRPI)
2em |92
oco oc)1 1B ["]
M = L,RI M -P,s R2+M = R2,s| uPdare Address
FH BUSR BUSR stack Routine
113 1
Mem = M, Q| see
P =S RT3
L
‘ PLA Execution Mode
LD Loe ST STD STp STOP
LD} LOPI
00€E 00F
2 =M l 2 =M
119 1 1 11A
R2 - M = R2 R2 - M = R2
STKOV STKOV
008 009 00C 00D
M = RI M <P, R1) =1L (P) =L
CRLOG CRLOF WMEM WMEM
[_F‘ BUSR BUSR BUSR
1-8] Machine State 1-13 Fetch 1-13 Store Result
(016) (OFE)

1-24

Figure 1-15 OPC 0 (LD, ST)

Fetch
PLA Addresting Mode
NO Jume NO JuMmp ABK AB
001 002
. P+2 =P
nolhmgﬁ §+2 -5 Address
BUSR Routine
111
PLA
=—==y==== Execution
Mode
4 [}
011
M -=P,S
BUSR

l -8 I Machine State

Fetch (016)

Figure 1-16 OPC 1 (AB)

Fetch

PLA Addressing Mode

ADK ADK P @
Addressing
Routines
PLA Execution Mode
AD ADP ADS M
- 025
¢ M+ =1
CRADD
WMEM
BUSR
020 021 024
(R1)+ M = L,RI ® ‘C&J’P'S RI)+ M =L
CR odd BUSR CRADD
7] WMEM
BUSR

w Machine State

Fetch (016)

Figure 1-17 OPC 2 (AD, IM)

Store Result
(OFE)

Fetch

PLA Addressing Mode

SUK SUKp @
Address
Routine

PLA Execution Mode

SuU SUp C2 SuUs
NGR
035
) n - ALU
GROFNU
NGR 0 I C2
142 143
0-M =1L
0 =RI CRSUB
BUSR WMEM
BUSR
030 031 034
RI) - M =L
(R1) - M =R) E:;JP'S CRSUB
CRSUB WMEM
F BUSR BUS

Machine
I I-Bl State

(1) n

‘I-IJI Fetch (016)

K05, K06, K07, K08, 0

ifn=0 (OR1) 3C2

ifn 70 (OR1/) #NGR

Figure 1-18 OPC 3 (SU, NG, C2)

Store Result
(OFE)

REV 1-25

Fetch (016)

PLA Addressing Mode
ANK HLT
RIT
INH
Address
Routine
PLA Execution Mode
AN ™ (&) ANS
040 041 046 045 04
L RI.M =L
Ri.< M = C,RI PSW.M =M R1.M = ALU s thoa
CRLOG BUSR CRLOG BUSR WMEM
ﬁ [T BUSR
)
Cao l 0
37
Not operable Rl o M = RI
for this
instruction [F]
1-8 1-13} Store Result (OFE)

Machine State

(1) Note : - Test Q0 1o have a T8 pulse CLG = REPSW. T8
- M register is updated because PFF is reloaded by M11.

Figure 1-19 OPC 4 (AN, TM, CM, AC, HLT, INH, RIT)

1-26 REV.1

Addressing switching + exec.

Il-l]l Fetch (016)

ORr ORs ENB
ORK SMD
050 054 051 LKM
(R1)or M =L
R1)or M = L,RI CRLOG PSW or M = M
CRLOG WMEM
BUSR
)
w Machine State Store Result
(OFE)
(1) Test to allow T8 pulse
! v
ln-ul Fetch (016)
XR XRS TNM
XRK
060 064 066
RI) + M =L Rl + M = ALU
R+ M = LRI (CRLOG CRLOG
CRLOG WHEM ; BUSR p

w Machine State

Figure 1-20 OPC 5, 6 (OR, ENB, LKM, SMD, XR, TNM)

Store Result
FE)

w Machine State

Fetch (016)

PLA Addressing Mode

070 [

SPA = K12/-K15/
K11/,5PA =CT
GCTLD

1

l

PLA Execution Mode

SLA/SIN oA [su/stc ol]snt/snc
[Rl =Q](5)' Rl = Q]
1121
©)[RI72 =RV
o (Cxog) 1 o ("xos) cr+i
SRQ ; Repeot
SLA SLN SRN SRA St sLC Gdrodr
06C 094 084 085
R = 1 06D 095 R1/2+QO-R) 2R1 = RI R1+Q0 = RI
cr41 M-AO][M-»AO] el cr+1 SL?F:'
" epea . Repeat
epeat GCRDSR Repeat GOSEL
*) *
| FUI5R2 0
028 029 039 038
Trop l ¢ l2.le-p,M,o] ‘ L Rl = Q] I
118 11C 121
Rl = ALU Rl - L =
o6 2.16 =P, M| (2) R1 = ALU
GCRVML CRLOG
BUSR [F]
1 0 1 0
POP+LO® LI+Q1S
" I] oer | 05 l PossomLQIs|
IP-M-MI 2RI = R) ‘P-M-Ml RI/2 =R
P+2 =P SRQ
P+2=p
| I (X GCRODSR
1D I
M/2 = R2
DC3 (1) Soving P
AD =P, (2) At the same time 2.16 = L 3 LOxLI = 0
BUSR (3) Arithm. Shift on RI 3 LOxL). The bit is retrieved
in QO
(see MVF) (4) Looding 0 in Q15
(5) In circular shifs Q15 is injacted
i -13 1-12 (6) GCRDSR 3D dara : K09/.ALUGO + K08.Q15 [1-12) 1-8
Fetch Trop Fetch :
Tre Machine St
016 OFF 4 echine Store
(016) () (016) (OFF)
Figure 1-21 OPC 7 Single Shifts (SL, S R)
—

(1) MUMLOAD =1 prevents ill timed OVFZI
(2) GCSEL results in Q15D = K0B. ALUOO
(3) GCRDSR results in Doo

data = K09/.ALU 00 + K0B. Q1S5 -

DSH

Fetch (016)

DSH Zero

Kil/..KI15/ =C

GCTLD

PLA Addressing Mode l

(4) Arithm. Shift on A
right normelizing i
(5) Rt -~ 1 to position

075

A2 = ALU (6) 2 <~ P rhe
GCRFNU count at o
BUSR

I

1 gives LO = LI ond
ntroduces 1 in Q15

LOXL! (detection

of already normalized result)

nP -2 in 06A for
31 if operand nul.

PLA Execution Mode

DLA DRA DLL -~ DRL
0i9 DN DRN oL 018 PRC Q1
P -—M 2A1+Q0=A1 | |A1/2=A1,Q0
oLQ SLO SRQ
GCRVZO CT+1=CT CT+l«CT
GCSEL GCRDSR
0 8 lDLN Repeat Repeot
DLA
4 I 0AS 01D l (2 Q)
2A1+QO0=A]) 2P I sl I
P =M
sLQ)
CT+1=CT 131
Repeot I U15R2 0 0 RO8] Q =M
|:ol [13] DRA| DRN
084 08 132
M P Al =L I A1 /2=A1, 008 2 -P M = A2
GAEXL SRQ T GCRFNU
(5) CT+1eCT © BUSR
GCRDSR
124 | .
Repeat
Q —om 1+ (Gosn) o FUISRZ) @
068 08A J 120
125 2A1+Q0=Al MeAQ ALUZERO
/2~ A2, M st P-2.eP SRQ !
GCRFNU P+2eP T 1£0 4
T 129 I A1/2-A1,Q0
128 M -p SRQ
P/2wM GAEXL GCRDSR
Al — ALU W
GCRVML
CRLOG 078
07A 078
101
2A1+Q0 Al A1/2 A1, Q0
AQ =P SLQ SRQ
Q=M ‘ P+2 «P
BUSR GCROSR
1CE 1
M/2=A2
G AleALU
CRLOG
h-13 w -12
Fetch Tra Machine State T i
016 (ofn (Or;;;) Machine State

Figure 1-22 OPC 7 Double Shifts (DL, DR)

R

EV. 1-27

Fetch (0186)

T3BM, PLA Addressing Mode
MLR QA FALK MLR, MSR, ML, MS,
m TLR,TSR (857) [TL,Ts (857)
13 MSRD
2nePf, M [12C] [13C 1 I T4C 1o r7c]
CT+l=CT
L1
(R2)+M=R2, §
o0 [P-2eP ; BUSR
Mep,S }<___ —-
BUSR Q2¢
SPA =CT;
okl Mem=i, SP
Al —ALU Q=M ; CT+l=CT
CRLOG P-2eP ; S-24$
—_—
] PMI 0
PLA Execution Mode ‘
L MLK TL(857 S
o078 IM 0P8 { 079] ®57) lM e [Msao o JS 857)
PeM 2n=M 2/2%Q PeM PaM 2/2-Q
CT+l=CT P-2eP GBTMM CT+l=CT CT+1=CT GBOM
@ WEXM
1 137 1 13A__] 13C_|
]
P+MeM [2n =P I 2N =P, Q l
2neP CT+1«=CT
138 | 130]
139 1 T
WMEM WMEM
R2)=Q SPcteL SPcrel
P-2eP P-2+P p-2eP
BUSR " CT+1=CT CT+1=CT
BUSR BUSR
] ____,{
03C OAF 1_04c 05
SPA=CT R WMEM WMEM
Ao Mem-—MMU SPA=CT SPA=CT R
MemeL ; SP GBTMM LeMem LeMem sLo
CT+l=CT sLa SP-L SPeL §+2=S
S42e5 S+2e$ CT+l=CT CT+1=CT BUSR
BUSR P-2ep P-2=Pp
GCRVML S Sr2ms WEXM
| 1 I |
o PMI)1 o(C a0)1 oCPmr Y1 | oCePmi) LoCao)
1 03D
MePp, S Mem-=MMU MaP, S MeP,S MMU =Mem
BUSR @) PeS BUSR QeM PS5
| [1 14t]
Al =ALU {CT) = SP address R2-M-=R2
CRLOG P =Loop Counter OVF
[F] S = Memory Address Counter BUSR
(1) Saving of R2 in the case of a cut-off of MLi, |
Toto, Aj with | < i after loading of Ak with

w Machine Stale

Figure 1-23 OPC 7 Multiple Load/Store, Table Load/Store (ML/MS, TL/TS)

1-28 REV.I

j< k< iby o page fault,

(2) P has already baen incremented in RT2C.

(3) GBMMU does MMU = BIO if KI5 =1
i.e. MMUYBIO if KI5 =0,

Il -I3anch

016)

5 ‘“/ ¢ L

@Fuch (016) fFetch (016)
590
10 - M .2
CrO48
T ;
155 | !
M 2 = A0 i
Q - A MAD
Grusration
1
157] :
080 ADORM ~3 |,
M -5 RBUS i
GBTMP |
1F7 , BUsk)
RI = M, L s l
WBUS 28
GBTMP BIO ~ R3
BUSR CRIO
GCSEL
1at] ASR = M
o [
AR,AC = CR 139
WBUS RIORM = R3
SEQBIO SLO
) (2)
WAIT (077) WAIT (077}

(1) - M =L and WBUS maintain BIO for 120 ns oi-er ending edge of TMR. In the same cycle SEQBIO inhibits the

BSYCPU resetting on T6.
- WBUS sets WRITE to “one"; so in INR,SST, T -7 . WRITE = 0 and in CIO,OTR, WRITE = I,

(2) SLQ for MUQ = 1 permits clock echo if FACIN®

Figure 1-24 OPC 8, 9 1/O Instructions

Figure 1-25

Addressing

089

0 = Al,Q
GCRVZO

145

148

AWM oy
2

ALUI5S = Q0
QSHR
CT+1 =CT
Repeat

149

AL(4)M = Al
Q =M
GMULTI

A2 = ALU
GCRFNU

28]

Al = ALU

GCRLOG

GCRVML
BUSR

Ferch (016)

OPC 8 Multiplication (MU)

099

2xA2 - Q
15A

Addressing

Al = Al
GCRVZO

158

1

2(A)

Bit QUOT=QI15
GCRDSR = Q15
CT+1 -CT

tM)}+QO=Al
SHLQ

15C

1

2(A1

Bir QUOT=QI5
CT+1 =CT

1M)+Q0=Al
SHLQ

REPEAT

15D

I

A

11+M =Al
SHLQ

Bit QUOT=QIS5
GCRFNU

Bit 0 of dividend second word is thrown ou!

OVF is reset.
Dividend sign is stored.

GCRDSR sers OVF if division is impossible.

or A <0 ond ALU=0

Oond -M ALU ©

Quotient = QUOT + A
uotien Lu OQMOO

of

MuUQ1 =0

049 048
AIOM = Q AlizM = ALU
G - M GCRFNU REMAINDER CORRECTION
O.K. it A30ond ALU 20
Clock Q16 inhibited
AltM = A} O.K. if A
059
AIBM = Q Test DIVA = SED/FSIG/+SFD FNU MUQI =}
Q=M Test DIVB = SFD.FNV/+FSIG
0BE 0BF QUOTIENT CORRECTION
Ml =M M - A2
CRADD CRLOG
GCRVYML GCRVML
BUSR BUSR
161 |
M = A2
G
Maochine Fetch (016)
Stote

1-26 OPC 9 Division (DV)

1-29

Addressing
PLA Execution Mode
STORE LOAD or OP STORE
08C 088 098 9¢
/10, = M,Q 0 -m 0-M 2/2 - M r Frx
WEXM GBTMF GBTMF GBTMF Addressi
GBOF BUSR BUSR BUSR e Addresting
SIMPLE 0 K08 | DOUBLE } } 09A 09
o — Al =L
WBUS GFLOT
154 155 SIMPLE 0 K08 I DOUBLE BUSR Pe=m
M - Q $42 = § GBIMF
§+2 - S 14D
FLO o MEM FLO = MEM 99F
WEXM MEM = FLO 16A WAIT /DONEF
WEXM
GBOF 542 = A2 =1L RBUS
Geor BUSR GBTMF waUS A
BUSR L —FLOT FLO = CR
14C | T BUSR
MEM o M] CBTMF I
- - FL EM = FLO FLO = BIO
$42 = S $§+42 = S l BIO - Al
FLO ~ MEM GBTMEF GBIMF 1CF SEQBIO
SLQ M = ALU BUSR L = FLO RBUS
$+2 = § SRQ P =S BOF
WEXM BUSR L GFLOT °
GBOF
BUSR 152 |] I 165
MEM = FLO 247 RBUS
Q=M WAIT/DONEF , GBOF
$5+2 =S FLOCR = CR BUSR '
GBTMF BUSR
BUSR]
FLO = MEM 082
FLOCR = CR s FLO = A2
P -5 tore SEQBIO
RBUS
1 CE I\CF GBOF
MEM = FLO MEM = FLO
M = AO [l
GFLOT GFLOT &
(LM =P,
153 | | 047 v BUSR !
(WAIT/DONEF WAIT/DONEF “
2xA0 =S FLOCR = CR l
BUSR
]
Ferch (016)
1-134Fetch (016) (1) This location is necessary 1o reset BSYCPU - M - P, S needs the transfer P = M in 09E

After the oddressing routines, the effective address of the operant is in Q register (see routines type "C")
(1) contents of Q ore now: [3] AD

S = Store flag
AD = Address (right shifted)

Figure 1-28 OPC 9 Floating Point Convertions (FFL, FFX),

Figure 1-27 OPC 8, 9 Floating Point:OP, OP Store, P857 only

Load,Store (FA, FS, FM, FD, FLD, FST) P857 only

1-30 REV.I

RF

1-13fFetch (016)

DA, DAR, DAK, EL, ES

Addressing (Special for DAR)

—

P857 only
PLA Execution Mode
13
oal DAR oan IPAK oAS })A,DAR A8 kL 0AC l s
P+M = P,S "Mem = M Mem = Q GBEX GBEX
BUSR P+2 =P $42 =S BUSR R} -1
$42 = § BUSR WMEM
l BUSR
I 172
171 Mem = M
Mem = M P -5
P -5 BUSR
l 008 1
0AD I M - RI
CRLOG
A2+M = A2,Q
Q -M [[
m
oot 168 (;
NO JUMP 2A2 - A2
IF] GCRFNU. |)
16C l
A1+M+Carry = Al
CRADD
BUSR
o |
A2/2 = A2
[F)
'!-lJlFenck (016) @ Machine State w Machine State ll-lJISoom
Result
(OFE)
(1) Corry in Q00
(2) FNU correctly positioned on 15 bits of the second word.
Figure 1-29 OPCI0 (RF, DA, DAR, DAK, EL, ES)
TN

RB

E-IJ'Felch (016)

01 081
NO JUMP P-M =~ P,5
F BUSR
[:I'-BI Machine -13fFetch (016)
State

Figure 1-30 OPC 11

DS,DSR, DSK

Addressing (Special for DSR)

PLA Execution Mode

DSR

DSK

08B

Mem = M
P42 =P
542 -~

w0 |

A2-M = A2,Q
Q ~M

)74 [

2A2 - A2
GCRFNU

ws |

Al-M+Coarry = Al
CRSUB
BUSR

w |

A2/2 - A2

l‘:’ Machine State

(RB, DS)

REV .,

1-31

1-32

Clear
R1
RIGH

PLA Execution Mode

1-11) Addressing

LC

ocs

Ricrossed=MRIGHT,
GBCH ; BUSR

[179

5C

0CC

Mcrossed = R1
Mem = MRIGHT

Rl =1L
GBCH

[WMEM__ BUSR

17C l

PeS
BUSR

037 I

Rl or M = RI

[f

Machine
State

Figure 1-31

1-13 Store
Resuly

(OFE)

ECR
0Ce
Mcrossed = LRI
[F
1-8 | Machine
State

OPC 12 (LC, SC, FCR)

1/9/75

Addressing

PLA Execution Mode

cC

0DC

008

jIcw
009

cwep

SP = MRIGH
GBCH
BUSR

R1-M

- aly P-M = aly

CRCOM CR COMmP

[F]

[F]

173 I

MemCH = QRIGH
P -3

BUSR

178 l

A0-M=ALU
CR COMP

(7]

Figure 1-32 OPC 13

w Machine State

(CC, Cw)

w Execute
QED
Addressing

M - L, A0
WBUS
PLA Execulion Mode

026 RTN Master 034 RTN User 0 Qo0 !
o] ; | .

sLQ
AOD+M = MRIGHT

(U]
RI =L
WBUS
GBIME R24M =—R2,S
BUSR BUSR 0D7
M = Q
,85 cro
SEQBUS Mem = P
WER §-2 =5
R - BUSR
. i) o PA Erec
08 [0£9
-p F
Q = PSW from wock [Mom T ECRFUO Mom 2 CF
M =3¢ Q=M BUSR
18C f
M 340 M+2 = M
ENBFZI
180] 0CF *
Ao = FFBF M = Ao L =8I0
M = PSW from stock Q -M SEQ BIO, WBUS)
BIO = K, MR, QR
. GFETCH 106
Ao or M = M Qo =0 Trop _
Qr = IXIU 1Y = M 091 (Ko7 = 1)
P -5
0 - @
o |
M and PSWaPSW|l PSW = PSW from stock M® 16 = ALY
BUSR GCRFNU
o |
Rl or M = RI not operable for this instruction 08A 088
] AD =L Trap
WBUS
BUSR ‘L
||~|3|Woil 077) w Mochine State i-13] Fetch

1-11] Addressing . Trap (OFF)

(1) Contentsof More [0 [k

(2) This position permits the BSYZO which had been inhibited in 0CF by SERBIO so that the BIO s
are not destroyed on T6. S is loaded because addressing routines type “S" (withoutPeS) were used

o]

Figure 1-33 OPC 14 WER and RTN Figure 1-34 OPC 14 Execute (EX)

REV . 1-33

Addressing

PLA Execution Mode

R1-M =R1,S STKOV

195

PSW = L; WMEM
§+2 = S; BUSR
197 T
L -MEM;WMEM
S$+2 -5
Q=M
P = L; BUSR
198 |
L = Mem
M - P,S
BUSR

Fetch (016)

Figure 1-35 OPC 14 Call Function (CF)

1-34 REV.I

Addressing

Priviledged

0C5

A0 = P,5
iSR

Anytime
during MVF
R R
| |

|

| Page 'lnterrupi
| Fault |

|
|
I
|
I

|
| |
L _1_ -

Note:

The term “move" is

active during the transfers -
permits the shifting.

|1-lgfetch (016)

Trap Table
(OFF) Save

(M) = LONG -2

0D4
Mem = M
A2-M = A2,S
G MOVE
0 K08 |
0E4 [] 0F5
M - L M -
Q -M Q =-M
P-2 - P P-2 =P
WMEM GBEX
BUSR WMEM BUSR
e |
L -= Mem
Al-M<Al,S
GMOVE
1 PM1 0

Figure 1-36 OPC 14 MVF and MVSU (P857 only)

1-12| Trap
(0FF)

@ Execute
al

CIR

Fetch (016)

MVB (P857)

0F9 OFD
M~ L,RI Mt
CRLOG f WMEM
kCRLOG, BUSR 0
|| 1 109
108 R2 - P
Priviledged 1Y
M = A0
P-2 =P
Q 1 PMI
/10C = M
181
M/2 = AD
fMAD 4 Q=M
het to I
189 |
T 0 1
Ao e ™S oF4 |
GBEX
GBTME Al - § Al 3
BUSR BUSR BUSR
s 1 !
BIO = R3,C 114 ll
CRRTN
Mem = M
A2+MaA2,$
& ; G MOVE
(1) Write in System Mode ‘B7M LL
so no PAF possible 0 - M
P-2 =P
WMEM
BUSR
0 K08 1
104 T 1. 1D3
L = Mem L = Mem
GMOVE Al+M=M,S
Al+M=Al,S m GBEX
C |
1 PMI 0
1 | S—
A2Z+M = A2 Any time
A9 during MVB
r T]
0 - R2 | ' |
Page Interrupt
100 ocs | IFaur | |
AO =P, AOD =P, l i
BUSR BUSR | |
[J
i -8 1-13) (Y ll-uzl I‘ilil @
Machine State Store Result Woit Trap Fetch Trap Table Save
(OFE) (077) (OFF) (016) (OFF)
Figure 1-37 OPC 15 (Cl, RER, MVB, MVUS)

RE

1-35

	Scan_PR0170173_0524_001
	Scan_PR0170173_0525_001
	Scan_PR0170173_0525_043
	Scan_PR0170173_0526_001
	Scan_PR0170173_0527_001
	Scan_PR0170173_0527_058
	Scan_PR0170173_0528_001
	Scan_PR0170173_0529_001
	Scan_PR0170173_0529_044
	Scan_PR0170173_0530_001
	Scan_PR0170173_0531_001

