PTS 6800 DATA MANAGEMENT

6. INDEXED RANDOM FILES

6.1 Description

Random files as dascribed in the previcus section are simple to set up and use. The limi-
tations become apparent when records are referenced by non-seriat items such as names, or
the user wants to access the record via a number of different items such as name as well as
account number,

in this case, an index must be created that provides a cross-reference between the item
provided as the reference {the symbolic key) and the relevant record, These keys can be
aiphabetic such as names, alphanumeric such as encoded charge numbers, or numeric such
as account numbers. Up to four keys can be used to reference the record. When a record is
required, the instruction is supplied with the key and the system looks up the fogical record
number associated with the key. The symbolic keys are all held in a sequential file called an
‘index file’. A summary of this file is created in order to reduce the search time for a
record. This summary of the index file is called the ‘master index’, which is also a segquenual
file. The data file, index file and master index file constitute a 'file structure’,

B.1.1 File structure

The basic companent of a file structure is a data file. Each file structure can contain onfy
pne data file. For every record in the data file, at least one item has been nominated as a
key. The keys are gathered into an index filg that has been sorted according to the pure
binary farm of the key and into ascending order. The index file is thus a sequential file.
Each key in the index file is given the logical record number of the record it belongs to in
the data file. The record key in an index file is called the ‘symbolic key'.

The number of symbolic keys in the index file is olwiously the same as the number of
records in the data file. To search through the index could take a ot of time for a large file so
the system divides the index into partitions. The highest value key in each partition is
copied into a ‘master index” with the lowest record number of that partitian. This master
index is also a sequential file. When a symbolic key is input at runtime, the master index is
searched sequentially until there is a match or unti! the next highest value key is found. In
either case the master index paints to the partition that contains the symbolic key and
hence the logical record number of the required record. Nate that the master index is
stored in memory whilte the index file is assigned.

The relationship between the data file, the index file and master index is shown in the
following diagraem.

6.1.1
Aay 1878

PTS 8800 DATA MANAGEMENT

MASTER INDEX INDEX FILE DATA FILE
logical Logic;f
. rd . recor ical
symbolic ;?Jcrgber WTbOI'C number riceoyrd Irgg:acril
key of index &Y of data number
record resord T
h 4
AD] 1 4 TAA| 8 AF 1
AG 5 partition AB 10 AH 2
AM]| 9 | l AC| 6 AG 3
4| AD 7 AK 4
f bl AE 1 Al 5
partitian AF g AC B
AH 2 AD 7
8} AG 3 - AA 8
4 9| AJ b AF 9
partition AK 4 AB 10
AL 12 AM 11
12 AM | 11 AL 12

Figure 6.1 File Structure

Consider two examples of record access from a key supplied via the keyboard. First, key
AG is supplied, then AL.

Exampie T:

1. The operator inputs AG.

2. Aseguential search is made of the master index until a match occurs, or the next
highest value is found.

3. A match occurs stating that symbotic key AG is in the partition that starts with
record b,

4. Asequential search of partition 2 of the index file until 2 match occurs — this gives
the logical record number 3 in the data file.

5. Therecord is accessed directly,

Example 2:

1. The operator inputs AL.

2. A sequential search is made of the master index until a match occurs or the next
highest value is found.

3. AL does not exist in the master index but a higher value is encountered, i.e. AM,
which gives the partition that starts with record 9.

4. A seqguential search is made of partition 3 of the index fiie until a match occurs — this
gives the logical record number 12 in the data file,

B, The record is accessed directly.

Thus the use of a master index as a summary of the index file, and the division of the index
into partitions, gives considerable savings of time when searching for a record.

Any data item in the record can he used as the key and it is passible to use mare than gne
data item for accessing the record. If a second (or third or fourth} item is required as a key
then more index files must be created {and master index files), see figure 6.2 below.

6.1.2
May 1578

PTS 6500 DATA MANAGEMENT

MASTER
INDEX FiLE 1

highest logical
symbolic record
key in pumber
the of first
partition index
record in
the par-
tition

3=

i

Iu] — +—
_— b1

MASTER
INDEX FILEZ

B3 1
B6 4

INDEX FILE 1

symbolic logical
key record
number
of data
record

partition AA 3

1 AB b

AC 23

partition AD 8

2 AE 17

AF 2
1 { |
oo

INDEX FILE?

partition B1 7]

1 B2 2

B3 19

B4 8

partition Rb 3

2 BG B8

| |
|
L

6. 1.3
May 1978

DATA FLLE
record data
keys file
| logical
record
number
v
AL | B8 1
AF B2 2
AL Bb 3
AZ |B7 4
AB | B4 5
AL | B9 6
AS |81 7
AD | B6 8
I

Figure 6.2 Data file with Two Sets or Index Fifes

PTS 6500 DATA MANAGEMENT

6.1.2 The Index file

The index file is a sequenttai file and contains ane symboftic key for each record in the data
file and the logical record number of the data file record. It also contains a status indication
for the record and an indication of duplicate characters in a set of symbolic keys.

Allowance must be made for the file to grow without the need for frequent rearganization.
Just as a number of empty records are allowed for when creating the data file, so should
empty records be present in the index file. The ratic of used to empty records is called the
‘load factor’ and is a parameter required for the Re-organize Index utility {RIX) which is
fully described in the Utilities Reference Manual, MO8. The number of empty records in the
index file should be the same as that in the data file, but the empty records are put at the
end of each block {i.e. sector) in the stated proportion. Consider an example data file of
100 records spaces. It is expected to grow to this size quickly but when the records are set
up, only 50 data records are available. The index file is created with symbolic keys pointing
tg the existing records and not the empty ones. However, provisian must be made in the
index file for the data file to grow, so the index is created with a load tactor 50%. {n the
data file, the empty records are positioned logically at the end of the fite. The index is a
sequential file and new symbolic keys must be inserted in the correct sequence so the spare
index records are placed in each sector. The new key is inserted in the carrect position and
the following records in that sector are shifted along. Figure 6.3 surmarizes this situation.

record number 50 record number 100
data file // V // 7
fon 100 sectors) W // 7
WX A
\ Vv VAN ' /
‘used’ records free records

Figure 6.3a Hustration of i oad factor-Data File
There is B0% utilization of record spaces after initialisation of the file, so the index is

created with a load factor of 50%. A new record, lggical recard number 51 is placed at the
end of the used area and the LRN updated.

e D VA VA 1D\ 7
N7/

Figure 68.3b Hiustration of Load factor-tndex File

The index record for record 51 in the data file is placed in the correct position according to
the symbolic key and the kevs foliowing in the same sector are shifted along. 1f the records
overfiow into the next sector, the records already contained in that sector are shifted along.

614
May 1878

PTS 680G DATA MANAGEMENT

The format of the index record is as follows

field length
1. Symbalic key t-n characters
2. Dummy 2 characters
3. Duplicate key 1 character
3. Logical record number 3 characters

whare:
'symbolic key' 15 the data item contained In the data file record that is used for identification

of the record. It is left ajusted and padded with blanks if n is greater than the key used.
‘Dummy’ 15 not used.,

‘Duplicate key' is the binary value of the minimum number of leading characters in the key
that is identical with the next symbolic key in the index file.

‘Logical record number” is that of the record in the data file that is referred to.

Remember when calculating the blocking facter that one byte must be added to the record

length for the status byte,

6.1.3 The Master Index File

The master index is used to reduce the time required to search the index file. This is created

by the systerm during the utility Re organize index (R1X). The size of the master index file is
decided by the user and this will eetermine the number of partitions, and hence the number

of master index file entries.

The master index file must reside on the same volume as the index and there can be a maximum
of 16 master indexes in the system at the same time. When the index file is assigned to the data
fite by the application, the master index is completely read into memory. The size of the master
index memory area has to be specified during system generation, and must be zble to contain
all master index files required simultanecusly plus three words,

The optimum size for partitions should be related to the physical starage of the index file

on the disk. That is, the master index file should be constructed to minimize disk head
movernents when searching for index records, The system reads a whole sector at a time

even through only ore record is being aceessed. |f the index file oceupies, for example,

5 sectors then the rmaster index file could be ¢created with b records. Each master index

entry would describe one sector {= 1 partition}. The key value is the last record in the sector/
partition {highest key value} and the lowest record number is the first recard in the sector/
partition. Thus only one disk head movement is required to access all the index records in
the partition. Figure 6.2 above illustrates this relationship.

For very large data files this could result in a large master index. A data file with 4 000
records would have an index file with 4 00D entries. |f these latter were blocked 20 per
sector then the index file would necupy 200 sectors with 200 entries in the master index
file. This could result in refatively fory search tirmes for recards with high key values. Time
could be saved by creating the master index tites with enough records for 1 entry per track
(number of sectors - 161, Thus the disk head only needs (o move once to the relevant track
and have access 1o any index record in that partition/track within one revolution/track of
starting the search.

Itis difficult 1o give exact values for the tirne required to find a particular record in a file
structure because of the number of variables involved. Nevertheless, the programmer should
kaeep these points in mind when creating a file structure and balance these to give a reasan-
able partition size Tor each circumstance. The variables to be considered are:

a. number of index file records

h. hlocking tactar of index file

c. load factor of index file

d. amount af memory available ta hold the master index.

615
April 1979

PTS 6800 DATA MANAGEMENT

If ‘a’ is high and ‘b’ and ‘¢’ low, then 1 track to a partition could be better than 1 sector
to a partition. If ‘a" is low then 1 sector to a partition could be better. However, with
limited amounts of memory available the master index would have to be small and the
partitions arranged to represent a {arge number of index records.

6.1.6
May 1978

PTS 6800 DATA MANAGEMENT

6.2

Creating the files

The files can anly be created on a TOSS formatted disk, i.e. one that has been created by
the utility Create Volume (CRV).
The creation of the files must be performed on 8 stages:

1
2.
3.
4

8.

The data file is set up by using the utility Create Fiie (CRF)

The actual records must be written to the file,

The index fite and master index file must be created using the utility CRF,

Before the index files can be built, the utilities used in this process must have two
intermediate files. These are created at this stage and for the purpose of this explana-
tion are called IFILE1 and IFILEZ2,

The utility Build Index File (BIX} is next. It takes the data file as input file and builds a
file of records that contain the key and the logical record numbers of the data records.
This output file is the intermediate file IFILET.

The recards an {FILE T must be sorted according to the pure binary form of the key
and into gscending arder. Output is to intermediate file IFILE2.

The sorted file IFILE2 is used as input to the utility Re-organise index file {R1X). tt
takes the sorted records from |FILE2 and writes them in index record format onto the
index file created al stage 3. The master index file is generated by RIX at the same
time using the file created at stage 3.

The data file, index file and master index file are now available for use by the appli-
cation. IFILE?T and IFILEZ2 can he deleted.

This process is summarized in figure 4.4,

6.2 1
Moy 1578

801304138 Bf1f & 4N Buinias g ainbiy

ERIF|
X3aNI
43I 1SVIN

L

h 4

uoieolddy

PT5 6800 DATA MANAGEMENT

¥ 3

/
\

3714
X3anNI

(X14)
spJodal ajly

Xapu|
astueBiosy

{1LHS) (X14)
NMM*_M_ N spa093. _m_u___w_ Sl 3114
Em_va.LSc_ N Xapul aleIPaWLa}L Xapu|
! Hog ! | i v1va
3 y 7y

$PJ0J34 ElRP
dn 18g

4

{443}
53114
918940

622
May 1978

PTS 6800 DATA MANAGEMENT

Stage 1

The data file must be created using the utility CRF.

1. Call CRF utility under the TOSS utitities Monitor, or as a subroutine from the
application, or via the DOS utility TOSSUT.

Z. CRF requests a number of parameters. Most parameters can be given as required, but
for an indexed randam file, two parameters are obligatory. To ‘File organization’ give
'S, and to ‘Number of index files” give ‘'n” where n is the number of index files required
{1-—-4}.

3. CRF searches the volume(s} for free extents large enocugh to hald the stated file size.

4, The file is created with the required number of records, all of which contain space
characters.

Each record is set to ‘FREE’ status. The LRN is set to zero for this file.

Stage 2

The actual records must be writien 1o the data tile using sequential operations otherwise the
LRN will not be updated and will still be set to zero the first time that the file is used. The
operations for this stage depend upon the source of the records. If the records already exist,
far axampis a bank branch putting its account records ote the PTS system then the records
could be copied into the ‘empty’ file on the disk. IT 1t is a new system it would save time
during the next stage if the records could be written into the file in the ascending sequence
of the koy data item.

Stage 3

The index file and master index files must be created using the utility CRF. The number of
index files must be given as ‘0" in both cases.
The record lengths must be:

for index file = key length + 6
for master index file = key length + 3.
Stage 4

Create the intermediate files usinge the utifity CRF. Any file names can be used, bhut the
example shown in figure 4.4 uses IFIILEY and IFILEZ2. The number of index files must be
given as ‘0" in both cases.

The record lengths must ha:

for intermediate file 1 = key length + 6

for intermediate file 2 = key length + 8.

Stage &

Meaxt, the utility BIX must be performod as follows:

1. Call BiX utility under the TOSS utilities Monitor.

2. BIX requests a number of parameoeners vid the cansole typewriter. Most parameters are
input as required. The data 1item that is to be used as the index is specified by two
pararmeters. These are ‘Key Addres; in Renord’ — give the address of the first character
of the key relative the start of the record, 11 decimal; "Key Length” — give the length
of the required key, in decimal.

3. BIX then scans the data file and copies the required keys to IFiLE1. The index records
are written sequentially to the fiiz without any regard to the value of the key. For this
reason the next stage {sorting! rmust he performed,

5 N
[E A

Aprii 1978

PTS 6800 DATA MANAGEMENT

Stage 6

IF1LE1 at this point contains the reql..red number of symbolic keys but they are unsorted.
The following sequence of operations must be performed.

1. Call utility SORT under the TOES utilities Monitor, or as a subroutine from the
application.

2. SORT requires a numibzr o4 pa tmete L4t ihas process is a standard sort and requires
no special parameters.

3. Thesarted records are output to I1FILEZ.

Stage 7

IFILE2 consists of a set of symbolic keys {with logical record number referring to the data
file} that are sorted into ascending order. The index records must now be formatted onto
the index file and a master index file built. Tha ma-.or ndex is structured and formatted by
the same utility, Reorganize Index File, ard req ires rio parameters from the user. This
master index is stored on the same volume as the index and is assigned at the same time.
The sequence of operations for this last stage is as follows:

1. Call RIX utility under the TOSS utilities Monitor, or as a subroutine.

2. RIX requests a number of parameters via the console typewriter. Most parameters are
input as required but the reader should note that a value is required for ‘Load Factor’
which was discussed in section 6.1.2, The index File. This parameter is the percentage
of ‘used’ records to be written to each sector and should reflect the percentage of
‘used’ records in the data ifle. The RIX utility will use this factar to construct the
partitions and to build the master index file.

3. Index records will be read out from the input file and written in the required format
for an index record with the required number of free records at the end of each sector.
Records are written to the master index file sequentially during the run. RIX performs
a check on the record sequence and an error is set if a key sequence error is detected.

4. Atcompletion, the index is properly structured and formatted and RIX has constructed
the relavant master index file.

Stage 8

The file structure is now available for use as an indexed sequential file, see the instructions
in the following paragraphs. it is possible to use this data file as a sequential file {for copying
or generating reports) or as an ordinary random file (but only if a record key can be input
which is related to the record’s logical record number). However, no process shouid be
allowed to take place on the data file that is going to disturb the order, or position, of
records without also updating the index file.

Note

It is also possible to start with an ‘empty’ data file, LRN = ‘0, and hence empty index and
master index files. Indexed-insert can be performed untit performance considerations

require index reorganization with RiX. This would probahly be the case for a new application
where data is generaled and coifected as the application goes live (a new branch office, for
example, taking on new accounts}.

6.2.4
May 1978

PTS 6800 DATA MANAGEMENT

6.3 Instructions

A definitive description of these instructions is contained in the relevant language reference
manuals, sither. Assembler Programmer’s Reference Manual, MOB, or CREDIT Programmer’s
Reference Manual, M04. Before these instructions can be used, both the data file and the
index file must be assigned othervsise an error will be returned.

These instructions are, briefly:

ASSIGN THE FILES

An indexed random file must be assigned in two steps.

— the data file is assigned 10 a lile code as accessible by all tasks or only accessible by one
task, that is with TC = @ for commaon files, TC = 1 for this task oniy.

— the index file is assigned using the index file assign instruction. The associated master
index file is assigned implicitly and read into memory. I1f more than one index/master
index is to be used, they must all be assigned separately.

On this data file records may be retrieved, deleted, stored, inserted, or retrieved sequential
from a certain point by using the commands indexed randam read, indexed delete, indexed
rewrite, indexed insert, or indexed read next. The record to be fetched is indicated by means
of a symbolic key.

It is allowed to assign an index-file as a data file, in this case the user is able to process this file
as an ordinary data file and can create his own index records. [t is not allowed to assign an
index fiie as both a data file and index file at the same time.

An indexed rewrite, indexed defete or indexed insert may be performed when all index-files
correspanding to the data file are assigned.,

Agsigning a file code to a data file or an index file on flexible disk results in the door of the
corresponding flexible disk drive being locked.

INDEXED RANDOM READ

The task must supply @ symbalic key with this instruction. Data Management searches the
master index first until a matching or first highest key is found. This will point to the
relevant partition in the index file and cause a search in that partition until a match occurs.
This will give a logical record number and the record will then be accessed directly. The
record can then be put under exclusive access if required. The CRNs for both the index file
and data file will be updated.

INGEXED REWRITE

The data record must first be read and exclusive access set (if it has been specified during
system generation before this instruction is used), The record is replaced by the new record,
except the symbuolic key which remains unchanged, and exclusive acces released. The CRN
for 1he data file will be updated to this record number and set to zero for the index file.
Note that in CREDIT this instruction is effected through the DSC1 statement.

INDEXED DELETE N D

This instruction will delete the data record and the entries in the index file, The task must
supply the logical record number of 1the data record which must be under exclusive gccess
(if this has been specified during systermn generation). The data record is read and the index
entry is deleted only after a successful read. The data record is set to “free” and exclusive
access is released. The CRN is not affected.

&.J.
My 1828

PTS 8800 DATA MANAGEMENT

INDEXED INSERT

This instruction allows the task to insert an new data record into the data file and create a
newv index record. The data record is added to the end of the file and the LRN is updated
in memary. Tha symbetic key is inserted in the carrect place in the index file according to
its pure binary ~alue and tha records Tallowing the new index record in same disk sector
shifted along inio the free area. If an index record already exists with the same symbolic
key, the new g inseried i front of the old. Exclusive access is not set and the CRN in the
data Tile and ‘ndex file wil' be set 1o tha values of the new recaord and its index,

INDEXED READ MEXT

This perfarms e same function as indexed randorn read except that no symbolic key is
supplied. The data record that 5 read is the one that i raferred to by the index record
following the courrent indox record nember. This itmniies that the ‘read next’ is the next
highest symbaoiie iy ang e data vecord it ponts o, 1 the CBM is zoro then the first key
in the index fire is usedh. The CHNsin tne data file and index flie will be set to the new
values.

This instruction can aniy Ye used afe- -

4. ndexed randfom vead

bo ndexedinser:

C. or another dexed rend next

CLOSING THE FILES
A glose Hile ol for firgt e datr e then euch of the index {iles 10 indicate that the
file 13 o lonuer required Dy the task. By closing ¢ nile ihe LRN v the volume tadle of the
corresponding THe s sudaied sng seved on theviumea The previously assigned Tile code is
rey ionger valie Tar s T

Wheo ar fovio o f0 Te o sl e pnesen i B il e glogsed imalicity

ardes and master index files. This will ensure
sinaetnre of the index Tite.

miry File woith pack’ utitity program

