PTS 6800 DATA MANGEMENT

3. FILE INTEGRITY AND SECURITY

All the subjects and techniques described in this manual assume that processing is proceeding
without any interruption or errors. This of course is an ideal situation and one that will
hopefully continue. it is also ar untealistic situation because at some time, no matter how
infrequently, an error may occur that could corrupt one or mare items of data, passibly the
whole file. The programmer must therefore write his application to ensure that the integrity
of a fite is maintained under alt circumstances, regardless of the source of the error. File
integrity means that the file contains valid, meaningful, and usable data. |f the application
is batch processing the file then the effects are only damaging in the sense that time can

be taken to reconstruct the file before it is required again. To achieve this reconstruction
can be relatively simphe. If the application is using the file for on-line processing then the
problems of an error become far more serious. A file is required to be available immediately
and one or more work tlations are thereby prevented by the error from performing any
transaciions.

From this it can be seen that there are two areas of file use that must be supported in the
event of corruption: .

— files used for baich processing applications

-~ files used for on-line processing.

The latter includes files used for batch and on-line processing. Te maintain the integrity of
a file, it must be made secure. As previously stated in this manual, a file is a logical concept
in that it is a body of information used during the processing of an application. The
physical representation of that information is not important from the point of view of the
application that uses it. If the medium on which the file is held is irrecoverably damaged it
does not matter ta the application as fong as an exact copy of that fife is available. A file
can be made physically secure by ensuring that a copy exists, either an the same storage
medium or on an allernative mediurm if the file can be easily copied to the original medium.
An on-iine file requires actions te be taken within the application.

The different aspects of {de security, and file inteqrily, are described in this chapter for
hoth batch and on-line files. Note that the subject of data security is considered to be
campletely application dependant — the program must check that all data handled is valid
and must secure the confidentiality of data according to the requirements of that application.

307
May 1978

PTS 6800 DATA MANAGEMENT

3.1 Securing batch files

Security of files used for batch processing is simple to achieve if the following system is
adopted. The majar requirement far any security System is ta ensure that a complete copy
of a file is available if the working copy is corrupted or destroyed. [t would be expensive to
duplicate all disk files on other disks so cassette, magnetic tape, or flexible disk can be used
as a hack-up volume,

Suppose we have a file called DKFILE on disk that we wish to secure (see figure 3.1). After
the file has been set up {stage 1) we make a copy ot the file (stage 2a — this process is
usually called ‘dumping’ the file.). DKFILE is now available for the batch applicatian.

At stage 3 DKFILE is required by the application. There are twao main sources of damage to

DKFILE that we can consider:

— internal, i.e. damage that occurs as a result of the application, system error, hardware
faults, operator errors.

— external, i.e. damage to the medium away from the cemputer such as mishandling by the
operator or environmental damage {tire, left in direct sunlight, ar magnetic fields].

When the damage has been discovered, copy the file from the security volume {stage 4) onto
the same disk or onto another disk of the original was damaged physically. !f the damage
was environmental, it is possible that the security copy has been damaged as well. To avoid
this, the security copy should be stored apart from the working copy, or make another copy
(stage 2b) and store this in another room or building.

@ tile set up on disk

(33) coPY DKFILE + security
to cassette/tape/flexible disk
make
J ,

anocther
security copy

F - ‘] and store

| @ use hy application J separately

damage to]
disk file |

(@) copy DKFILE - security
N e copy

onto disk from
back up volume

@ use by application

Figure 3.1 Simple security system for batch files

317
May 1978

PTS 6800 DATA MANAGEMENT

This is of course a very simple situation because (apart from listing, reporting or statistical
applications] the application wilt probably change same of the data in the file. If this is the
case, then the security copy will no longer represent a true copy of the disk file. Every time
there is a change to DKFILE {stage 5}, a copy must be made, see figure 3.2.

new
data

changes by
application

@ Copy DKFILE = security

B @ Make
{rew version;
anather

vL copy

@,

Figure 3.2 Updating the file and its security copy

it would appear that the disk file 5 now completely secure against corruption or damage
because a copy of the latest version is always available. There is still a source of corruption
that has not been allowed for, and that {s the new data itsalf. |f one ar more of the updating
records were wrong it might not be discovered until the updated records on DKFILE were
used in later pracessing. This could be prevented by keeping generations of the file. For all
practical purposes i1 is only necessary to keep three generations of the file {inciuding the
latest) plus the changes that updated each generation into the next. This method of file
security is known conventionally as ‘grandfather, father, and son’, or gfs, and s maintained
as follows, {refer also to figure 3.3):

1. DKFILE has been set up tversion 1} and a security copy exists {onie or twe copigs as
required, A1 and B respectively).

2. During the next run of the application, changes are made to existing records, new
records are added, or old records defeted (C1). The security copies no landger represent
the latest version {version2) of DKFILE so new security copies must be made, A2 and
B1. It is debatable whether a new B level volume is required, so three A level votumes
plus one B level will give adeguaste levels of security. If a Targe number of changes are
made frequentiy there is @ case for using three B level volumes. For the purpose of this
discussion ondy cne B lavel is shown,

3. DKFILE can be reconstructed on disk by copying from A2 {or B11, 1f the changes were
proven to e corrupt lwrang records deleted or changns) then OKFILE could be recon-
structed Sy copying version 1 to disk from volume A1 and running tihe application with
the correct changes, There is still the remate chance that the latest version on disk was
copied incorrectly to A2, 1f DKFILE were then to be corrupted it could be reconstructed
by copying the previous version to disk from A1 then updating the disk file from C1
to make the fatest version af the file. When the provious generation and its associsted

312
Apsril 1679

PTS ABO0 DATA MANAGEMENT

changes must be saved. This will ensure against practically all sources of
corruption.

4. To achieve three generations of security, the process of copying is continued at each
stage untit there are three A level (and B level if required) volumes.

5. When the fourth version of DKFILE is generated {with changes C3) the new versian {4}
is copied to A1, or ta a new volume A4 {and A1 then released}. Thus we have 3 genera-
tions of security, or two in the remate event of corruption necurring during the proecess
of generating Ad.

Cnce set up, this system becomes completely automatic and can be perfarmed either
thraugh the application or as part of the operator’s ‘housekeeping’ jobs on the system. The
decision to "secure’ any particular file must be made at the system design stage of the
application. Hf DKFILE were only a transient file to be passed to another part of the
application, or between applications, it would be unnecessary to maintain this kind of

security.

2.1.3
May 1978

PTS 6800 DATA MANAGEMENT

Changes Main file Security copies
make
security
1. —» Al —» Bi
KFILE version 1 COpY

A1 = latest generation = son

2. |C1 t» application

»p A2 —— » Bt

K.FILE version 2

A2 = latest generation = son
A1 = previous generaton = father

3. 1C2 application

—» A3 —>» B1

DKFILE version 3

A3 = |atest generation = son
A2 = previous generation = father
A1 = oldest generation = grandfather

4. | C3 ™ application

_ » A1 ———» B
for Ad and

discard A1)

Ad or A1 = latest generation = son
A3 = previous generation = fatcher
A2 = oldest generation = grandfather

5 |Cc4 p» repeat from step 2

Note: C1+ A1 = version 2= A2
C2 + A2 = version 3= A3
C3 + A3 = version 4 = Ad or Al

Figure 3.3 Full security system for batch files

314
May 1878

PTS 6800 DATA MANAGEMENT

3.2 Securing on-line files

Files that are being used by an on-fine application present a more difficuit situation from
the viewpoint of security. The files are required to be available all the time the application
is running. If the work statigns and the application are providing @ service to the public, like
a bank, tax office, or local authority office, we can hardly expect peopie to come back later
when a corrupted file has been reconstituted. The application must be able to provide the
same service in as shart a time as possible after an interruption.

Consider the situation where an application is providing a service at a number ot work
stations, see figure 3.4. All work stations have access to the file DKFILE through the appli-
cation-records can be accessed for information, for changing, for addition to the file or for
deletion.

work stations

application

NG

Figure 3.4 Mulitiple access to an on-line file

solid line
represents data flow

The first consideration when an on-line file is corrupted is 1c ensure a continuation of the
service. A copy cf the file must be available in as shart a time as possible. Note that the
ariginal on-line file may have been updated only seconds before the corruption occurred or
was discovered. How do we ensure that those changes exist on the back-up copy of the file?

3.2.1 Duplicated on-line files

If the installation had a limitless budget allocation one could afford the luxury of two disk
units with identical files mounted — a change to one would be duplicated an the ather.

For most situations this is not possible although it does feature in systems where the
immediate availibility of information is absolutely critical, see Figure 3.5, If the application
detects corruption of some kind in one copy of the file it still has access to the ather and
can centinue providing & service at the work stations. Where an alternative volume is
mounted, the application could activate a subordinate task ta create a file with the name of
the corrupted file {in this example DKFLE 1} then copy from the uncorrupted version. This
would provide an uninterrupted service and only the operator at the computer would know
that anything untoward had happened.

321
May 1978

PTS 6B00 DATA MANAGEMENT

work stations

application

W W <DKFLET> = <DKFLE2>

Figure 3.5 Duplicated on-line files

3.2.2 Logging the changes

Duplicating on-line files is an expensive solution to the problem of maintaining the
availibility of information. There is a cheaper way of doing this that is similar to the method
of securing batch files. [t features both a back-up of the disk file and a file contaning the
changes to the disk file since it was ‘dumped’. The difference is that the changes to the file
are recorded as they are nmade, that is, all changes are sent to a log file on cassette, magnetic
tape, or flexibie disk. It is not necessary to have one log file for every disk file as each record
copied to the log could have an indicator or identifier attached to it showing which disk file
it belonged to.

At certain intervals, decided at the system design stage, the on-line file is dumped to a
security voiume. The decision to dump a file could be taken at every 1 000th update, every
hour or the end of the day depending upon the requirements of the application. The
security volumes can be kept in the same way as those for batch files, that is, using three
generations in a rotating gfs system. Figure 3.6 itlustrates this situation.

/} work stations
pv& /

co
log file e icati
| of application

changes

security generation
make security A3 = son

A7 = father
copy at regular Al = grandfather
intervals

322
Ma 1878

PTS 6800 DATA MANAGEMENT

in the event of corruption to DKFILE, it could be reconstituted by a subordinate task
which copies from the latest generation security volume and merges this with the records
belonging to DKFILE that have been logged to the log file. The result is a new copy of
DKFILE complete with afl the latest changes. The application could then be back on-line
within minutes of the corruption being discovered.

3.2.3 ‘Graceful degration’

From the point of view of the work stations, is there any reason why the applicatien should
go ‘off-the-air’ at al}? If the installation is giving a service to the public, is it right to make
people wait because some part of the system has sustained damage? !f the corruption is due
to physical damage to a disk unit it could be sometime before full service can be restored.
The fact that we are recording changes to the file on the log file implies that we can indeed
continue to give a restricted version of the service. The application could continue to
accept changes as a result of the individual transactions and send these changes to the log
file. If any transaction wanted an inguiry enly it would not be possible, because the disk
file is unavailable due to corruption. This is all a matter for system design of course, but
there is no reason why the application should not provide an alternative to the log file if
that device should fail too. The important factor is the integrity of the file DKFILE and
changes to the information that that file represents could be accepted as long as there is
stil} a device operating at the central computer that can accept those changes. This method
of offering a restricted service in the event of device malfunction or file corruption is
known as ‘letting the user down gently’ or ‘graceful degradation’.

323
May 1978

