CREDIT PROGRAMMERS GUIDE

4., INSTRUCTIONS

Instructions direct the input, processing and output of information. They
specify the actions to be carried out by the computer, and direct the sequence
of events.

The general form of CREDIT instructions is.-—
{STATEMENT~LDENTIFLER] INSTRUCTION-MNEMONIC OPERAND~1(,0PERAND-2...]

STATEMENT IDENTIFIER - this identifies a point within the program and is used
in branch and entry instructions; a statement identifier need not be on the
same line as the statement, e.yg.

FRED! ADD A,B this statement is identified as FREDI
could also be written on two lines, e.g.

FRED1
ADD A,B

INSTRUCTION MNEMONIC - this specities the basic operation to be performed by
the instruction. There are nine groups of instructions, and the instruction
anemonic must be derived from one of these groups; see appendix A for a list of
instructions and categerics. In the above example the INSTRUCTION MNEMONIC was
ADD, one of the arithmetic gruup of instructiousz.

OPERANDS - these coonrtain the operational part of the instructions, thelir
significance beiny different Eor cachi instruction. Each instruction described
here and in MO4 refers to opearands from left to right as OPERAND-1, OPERAND=2
etc.

The groups of instructions available in GCREDIT are as follows:

Arithmeric

Branch
Input/Output
Logical

Scheduling

Storage Control
String

Subroutine contrel
Format I/0 centrol

2

etcher 197

CREDIT PROGRAMMER'S GUIDE

GROUPS OF INSTRUCTIONS

— ARITHMETIC INSTRUCTIONS
— LOGICAL INSTRUCTIONS

— STRING INSTRUCTIONS

— BRANCH INSTRUCTIONS

— SUBROUTINE INSTRUCTIONS
— INPUT/OUTPUT INSTRUCTIONS
— SCHEDULING INSTRUCTIONS

— STORAGE CONTROL INSTRUCTION

4.0.2
October 1979

CREDIT PROGRAMMERS GUIDE

4.1 Arithmetic instructions

These have two operands, and consist of the following instruction mnemonicsi-

ADD Add

CMpP Compare

DIV Divide

DVR Divide rounded
MOVE Move {conversions)
MUL Multiply

SUB Subtract

The arithmetic instructions ADD, SUB, MUL, DIV and DVR operate on either BCD or
BIN data items or arrays. Both coperands must be of the same type, e.g. both BIN

or both BCBb.

The CMP instruction operates on BCD, BIN or STRG data items or arrays. hoth
operands must be of the same type.

The MOVE instruction can be used with BIN, BCD or STRG data items or arrays,
and the operands need not be of the same type.

After the execution of most CREDIT instructions the status will be held in a
special register by the Interpreter, called the Condition Register (CR). This

can be used to determine the path the program takes on different conditions.

Arithmetic instructions will cause the Condition Register to be set as shown in
the table below.

| value | Meaning = _ |
] 0] | Zero result {
] 1 | Positive result |
{ 2 { Negative result H
i 3 | Arithmetic overflow occurred|
i l !

4.1.1
October 1979

CREDIT PROGRAMMER'S GUIDE .

ADD INSTRUCTION

IDENT MAIN

pDIvV
TERM T0
TWB TB1
START TAGO
781 BLK
10 CATOT BOOL FALSE
11 EOTAPE BOOL FALSE
10 INDEX BIN ‘0’
11 INLEN BIN ‘0*
12 LAMP1 BIN X'0200°
13 LAMPS BIN X'0100°
14 SUBACC BCD 8
15 TWORK1T BCD 8
16 ARRAY 8C01 (8),10D°0"
19 DMSTR STRG 1c
PDIV
ENTRY TAGO
TAGO
021415 ADD SUBACC, TWORK1
021610 15 ADD ARRAY (INDEX), TWORK?

4.1.2
October 1879

CREDIT PROGRAMMERS GUIDE

4.1.1 The Add instruction (ADD)

The ADD diastruction adds operand-2 to operand-] and stores the result in
operand-l. Execution of this instruction will affect the Condition Register,
as shown in the table in section &4.l.

Examples of the ADD imstruction

ADD ACC,DEP

This increases the contents of the data item ACC by the contents of the data
item DEP.

ADD LOOP ,=W"Ll"
This increases the contents of the binary data item LOOP by one
ADD CASH(TID,USER) ,DEP

This 1increases the alement 1in array CASH referenced by the subscripts TID
and USER by the awmount held in the data item DEP.

4.1+2 The Subtract instruction {(SUB)

The SUB instruction subtracts the contents of operand-2? from the contents
of operand-l; execution of this instruction will alter the Conditicn Register
as shown on page 4.1.1.

Examples of the SUB iamstruction

SUB LOOP,=W" 1"

If LOOP had an initial value of 10 then after execution of this statement it
would contain 9.

SUB TEST, =W’ ~1"

If test held an initial wvalue of 5 then after this statement had bean executed
it would hold the value 6.

T_INSTRUCTION | PAGE IK MO4 |
! ADD I 1.4.24 [
[..8u8 [_L.4.149 |

4.1.3
Qctopar 19749

CREDIT PROGRAMMERS GUIDE

4.1.3 The Divide instructien (DIV)
The DIV instruction divides the contents of operand-l by the contents of
operand-2 and stores the result din operand-l, any remainder being ignored.

Division by zero results in overflow, thus giving a value of 3 in the CR. The
Condition Register contents are described on page 4.1.1.

Example of the DIV instruction
DIy COM,=W" 100"

This divides the data item COM by 100, if COM had an initial value of 378, then
after this instruction COM would have the value 3.

COM/100 = 3.78
Rounded down = 3

Result in COM 3

|}

4.1.4 The Divide Rounded instruction (DVR)

The DVR instruction divides the contents of operand-l by the contents of
operand-2; 0.5 is then added to the result and the rounded down result stored
in operand-l. The Condition Register is set as described on page 4.1.1

Example of the DVR instruction

DVR COM,=W"100"

If the data item COM had the initial wvalue 378 then after the division the
result would be 4, as shown below.

CoM/ 100 = 3.78
+ 0.5 = 4.28
Rounded down = 4

Result in COM

]
-

4.1.5 The Multiply instruction (MUL)

The MUL instruction multiplies the contents of operand-1 by the contents of
operand-2 and stores the result in operand-i. The CR is set as described on
page 4.1.1.

Example of the MUL instruction

MUL AMM , XRATE
The data item AMM is multiplied by the data item XRATE. If the initial value of
AMM was 1700 and XRATE 450 then after this statement had been executed AMM
would contain the value 765000. Tf the receciving data item is not large emnough

to hold the result, its contents will be undefined and the CR will be set to to
overflow {value 3).

|_INSTRUCTION | PAGE IN MQ4 |

| DIV | 1.4.68 |

| DVR | 1.4.91 |

i MUL I 1.4.129 |
A

October 1979

CREDIT PROGRAMMERS GUIDE

4.1.6 The Compare instruction (CMP)

The CMP instruction compares two data items of the same type for similarity. It
sets the condition register to one of the values shown below, according to the
relationship between the two data items.

When the two data items are of different lengths, the comparison will be
executed as follows:

. For string data items the shortest data item will be extended (by the
Interpreter) with blank characters (X"207) from the right.

+ For decimal data items the shortest data item will be extended (by the
Interpreter) with zero dipgits (X°0°).

The values held in the Condition Register after execution of this instruction
are: —

VALUE	MEANING
0	Operand~l = Operand-2
1	Operand-1 > Operand-2
2	Operand-l < "perand-2

Examples of the CMP instruction

CMP SPBINW1,SPBINW2 Two items of like type
CMP SPRINW3,=W"97" Comparison with a constant
CMP SPINPUT,=C YES"
CON1l EQU W97”
CMp SPBINW3, CONI Use of an EQU constant

|_INSTRUCTION | PAGE IN MO4 |
d_ewp] 1.4.62]

4.1.5
October 1979

CREDIT PROGRAMMER'S GUIDE

MOVE OP1, OP2

BIN—»BIN OP2 0 1 1 —]

STRG-»STRG ‘]
OP1 [—]
—

NN TN Y
OP1 [
op2 Gy T |
l)
OP1 I 1 NOT COPIED
BCD-»BCD oP2 %8 T 1 1]
I
1 } * L
OP1 A
OP2
.FFF
OP1 %0 —]
NOT COPIED
Y
oP2 78 T
Tt 41y
OoP1 7
4.1.6

October 1879

CREDIT PROGRAMMERS GUIDE

4.1.7 The Move ipnstruction (MOVE)

The MOVE instruction moves the contents of operand~2 to operand-l. The
operands can be of type BIN, BCD or STRG, though transfer from BIN to STRG or
STRG to BIN is not permitted.

The MOVE can be used for transferring numeric information only between the data
types linked by arvows in the diagram below.

BIN <===> BIN <==~> BCD <~==3> BCD <=~-> STRG <-==> STRG

The rules for wmoving of data items is given on pages 1.4.127-128 of MO4. In
summary, moving to a shorter data item causes truncation of information, and
moving to a longer data item results in padding.

Examples of the MOVE instruction
MOVE OUT,=C”PLEASE ENTER USER CODE’

If OUT has been defined as STRG with a length of twenty-two characters then the
character string would be transferred to OUT. If OUT were longer than twenty
two characters then the last character in the string would be repeated. For
example, i1f OUT had been defined as length tweanty-five, then after this inst-
ruction had been executed it would contain "PLEASE ENTER USER CODEEEE". TIf OUT
had been defined as length ten, then it would countain "PLEASE ENT", only the
left hand ten characters being transferred.

{ INSTRUCTION | PAGE IN M4 |
1 MOVE | t.4.127 |

4.1.7
October 1979

CREDIT PROGRAMMER'S GUIDE

STRG—=BCD

op2

OP1

or2

OP1

oP2

OP1

OP2

oP1

MOVE OP1, OP2

| .| 1] STRG
RN
g | BCD
II] ‘ ‘l STRG
FFF
7|] BCD

| 39 37 41 41 32 31 30 | STRG

1

[BFFFFFFFF9721£] BCD

ﬂ STRG

] BCD

4.1.8
October 1979

CREDIT PROGRAMMERS GUIDE

MOVE OUTX,=~C"PLEASE ENTER YEAR E.C. 1979 : °

If, in the above example, QUTX had been defined as BCD then it would contain
“1979° as non~numeric characters are not transferred from STRG to BCD. Note
that after execution the contents of OUTX will have been right justified, have
the sign digit set and all unused digits will be set to X'F" (X'F" is the null
digit for BCD items). If a transfer of a number to either a BCD or BIN data
icem is requested, and the number is too large to be held by that data item
then 1ts contents will be uncertain and the Condition Register will be set to 3
{(Overtlow).

[_INSTRUCTION | PAGE IN MO4 |
L MOVE _ | L.4.127]

4.1.9
October 1979

CREDIT PROGRAMMER'S GUIDE

BCD—+STRG

MOVE OP1,0P2

0P2

oM

OP2

OP1

oP2

OP1

OP2

OP1

(L] BCD
R

L]] STRG

| BCD

00_00 00 |STRG

/1 - - |Bco

STRG

Bl 0

6 1 3 7 |8cD

11

N

[+ 303032 36 31 33 37]STRG

4.1.10
October 1879

CREDIT PROGRAMMERS GUIDE

MOVE FLDA, NUMB

1f FLDA has been declared as a STRG data item, four bytes long, and NUMB
is a BCD data item containing the value +123456, then the Tesult in FLDA
will be

+456

since moving from BCD to STRG always results in the sign being moved first.-
The remaining digits are moved, and converted, from left to right, but in
this case the receiving field is rtoc short, hence only the rightmost digits
are transferred.

[INSTRUCTION | PAGE IN 04 |
| MoveE | L:.4.127]

4.1.11
Qctober 197Y

CREDIT PROGRAMMERS GUIDE

4.2 Logical instructions

These are single operand imstructions and allow logical operations on boolean
data items. Boolean data items are used for holding such things as status
flags. Note that the Condition Register wiil be set to the previous contents
of the data item after execution of a logical instruction.

The available instructions are

CLEAR Clear a boolean data item (result binary zero)

INV Invert a data item {(reverse its state)

SET Set a data item (result binary one)

TEST Compare with zero (false) apnd set condition
register

Examples of logical instructions

CLEAR FLAG

This sets the boolean data item FLAG to FALSE (zero)

INV FLAG

The state of FLAG is reversed - if it was FALSE it will now be TRUE

| INSTRUCTION | PAGE IN MO4 |

| CLEAR | Ll.4.61 t

| INV | 1.4.117)

| SET | 1.4.146 |

| TEST | 1.4.155 |
4.2.1

October 1979

CREDIT PROGRAMMERS GUIDE

4.3 String instructions

These instructions are for the manipulation of character strings.
The available instructions are

COPY
MATCH
INSERT
DELETE
ZCOPY

These instructions operate on string data items, with two exceptions
. The XCOPY command can be used with both STRG and BCD data items.
« The COPY command can be used with BIN, BCD and STRG data items.

The string handling commands have two differeat types of operand.

. Character strings (or BIN and BCD data {items in the case of the two
listed above).

. Pointers and lengths, held in binary data items.

4.3.1
October 1979

exceptions

CREDIT PROGRAMMER'S GUIDE

copPy

FIELD 2

FIELD 1

TEXT 2

TEXT1

COPY INSTRUCTION

FIELD1,PL,LNGTH,FIELD2 P2
P2
01 | LNGTH
L I
Y Y
N m—— S
AN ~
NP \I
J,()
L G B

INSERT INSTRUCTION

INSRT TEXT1, P1, LNGTH, TEXT2, P2
P2
LNGTH
I N
// - -

P1

0

L

*

J——

ORIGINAL CONTENTS SHIFTED TO THE RIGHT

* COND.REG.=3 IF NON-SPACE
OR NON-ZERO
CHARACTER SHIFTED OUT

432
October 18789

CREDIT PROGRAMMERS GUIDE

4.3.1 The Copy instruction (COPY)

The COPY instruction is used to move a number of decimal digits or bytes from
one data item to another of the same type. Both data items must be STRG or both
must be BCD or both must be BIN.

The instruction format is:-

CoPY Dest, Start, No., Source, Start-2
Dest - is the data item which is to have information copied into it.
Start - is a binary data item containing a pointer to the positior. in Dest

where the copied information is to begin.

No. - is a binary data item containing the number of characters (bytes) or
decimal digits (half bytes) to be copied from Source to Dest.

Source - is the data item, part or all of which will be copied into Dest.

Start-2 - is a binary data item containing a pointer to the start of the
information in Source that is to be copied into Dest.

The pointers (Start and Start-2) assume thai tne first byte location is zero,
so to access the second byte or digit the pointer must have a value of one.

Example of the COPY instruction

MOVE S1,=W"0"
MOVE §2,=W"4"
MOVE 53,=W'1°
corY DEST,S1,52,3RC,53

Tf SRC had been defined as a STRG data item ten bytes long, containing the
string "XCURRENCY", and DEST as a STRG data item four bytes long, then after
execution DEST would contain "CURR".

If SRC had been defined as a BCD data item ten digits long, containing the
decimal number ''523012350", and DEST as a BCD data item four digits long, then
after execution DEST would contain "2301". NHote that the sign position in a BCD
data item can be changed by the program, ULy use of this instruction. The
Condition Register is not affected by the axacutiou of this instruction.

[INSTRUCTION | PAGE IN MQ4 |
L _copy | 1.4.63 |

4<3.3
October 1979

CREDIT PROGRAMMERS GUIDE

4.3.2 The Extended Copy imnstruction (XCOPY)

The XCOPY instruction moves bytes between any non-boolean data items.
It always coples at byte level, regardless of data tvpes.

The instruction format is:-

XCorY Dest, Start, No., Source, Start-2
Dest —~ is the data item which is to have information copied into it.
Start ~ is a binary data item containing a pointer to the position in Dest

where the copied information is to begin.

No. — is a binary data item containing the number of characters to be
copied from Source to Dest.

Source = is the data item, part or all of which will be copied into Dest.

Start-2 is a binary data item containing a pointer to the start of the

information in source that is to be copied into dest.

The polnters (Start and Start-2) assume that the first byte location is zerxo,
so to access the second byte or digit the pointer must have a value of ona.

Example of the XCOPY instruction

MOVE S51,=W'0Q’
MOVE 52,=W"4"
MOVE 53,=W"1’
XCOPY DEST,S1,52,5RC,S83

SRC has been defined as a STRG data item ten bytes long and contains the string
ABCDEFGHI”, and DEST as a BCD data item eight digits long. Then after
execution of this statement DEST will contain 424344457, the hexadecimal
equivalent of the character string “BCDE”.

If SRC had been defined as a BCD data item fourteen digits long and contained
the hexadecimal characters “244355525255537, and DEST as a STRG data item four
characters long, then after execution of this instruction DEST would contain
“CURR” .

The Condition Register is not affected by the execution of this instruction.

|_INSTRUCTION | PAGE IN MU4 |
1 XCOPY | 1.4.173 |

4.3.4
October 1979

CREDIT PROGRAMMER'S GUIDE

COPY INSTRUCTION

COPY FIELD1,PLANGTH, FIELD2,P2

FIELD 2 f

4]
FIELD 1 r

INSERT INSTRUCTION

INSRT TEXT1, P1, LNGTH, TEXTZ2, P2
P2
LNGTH

TEXT 2 [7 J l

TEXT 1 r

*

ORIGINAL CONTENTS SHIFTED TO THE RIGHT
* COND.REG.=3 IF NON-SPACE
OR NON-ZERO

CHARACTER SHIFTED OUTY

4.35
October 1973

CREDIT PROGRAMMERS GUIDE

4.3.3 The Ingert instruction (INSRT)
The INSRT dipstruction is used to insert a character string into an existing
character string, the existing contents being shifted to the right to produce

the required space.

The instruction format is:-

INSRT Dest, Start, No., Source, Start-2
Dest ~ is the data item which is to have Information inserted into it.
Start - 1s a binary data item containing a pointer to the pasition in Dest

where the inserted information is to commence.

No. - is a binary data item containing the number of characters from Source
to be inserted into Dest.

Source -~ 1is the data item, part or all of which will be inserted into Dest

Start=-2 - 1s a binary data item containing a pointer to the start of the
information in Source that is to be inserted into Dest.

The pointers (Start and Start-2) assume that the first byte location is zero,
80 to access the second byte or digit the pointer must have a value of oune.

If a non-space or non-zero character is shifted out of Dest, the Condition
Register will be set to 3 (overflow). Each c¢haracter shifted out of the
dataitem is lost.

Example of the INSRT instruction

MOVE 81,=W"5"
MOVE 852,=W"4"
MOVE 53,=W’4°
INSRT DEST,S51,582,5RC,S83

If the initial contents of the string data item DEST was ‘CODE:=N/A “ and the
contents of SRC was “23456789° then after this operation DEST will contain
‘CODE:=6789". Note that the previous contents have been shifted to the right
and as the field length was only ten characters the last four are lost. One
data item could be saved by writing the instruction in the form shown below:-

INSRT DEST,S1,52,5RC,52
If the initial contents of DEST nad been ‘ABCDEFGHIIJKL” and SRC contained
23456789 then after execution of +this statement DEST would contain

*ABCDE6 7BYFGHI" .

The details of this operation are shown below:

| INSTRUCTION | PAGE IN MO4 |
| INSRT | 1.4.116 |

4.3.6
October 1979

CREDIT PROGRAMMERS GUIDE

DEST
ABCDEFGHIJKLM SRC

234356789

Move four spaces into DEST

ABCDE FGHI take four characters from SRC starting at
' at character position four (the first character
position is zerg)

6789

Now put the two parts tagether

ABCDE6789FGHI

If a non-blank or non-zero character is lost off the end of the receiving field
then the Condition Register will be set to 3 {overflow).

4.3.7
October 1979

CREDIT PROGRAMMER’'S GUIDE

DELETE INSTRUCTION

DLETE FIELD, P1, L1

P1

L1
p—————
0 1 1 2 3 a4 5 6
FIELD | 30 : 31 : 32 | 33 | 34 : 35 @ 41
r———
RESULT AFTER EXECUTION
P1
0 l 1 2 3 4 5 6
FIELD | 30 | 34 35 ;41 {20 | 20 : 20

4.3.8
October 18789

CREDIT PROGRAMMERS GUIDE

4.3.4 The Delete instruction (DLETE)
The DLETE instruction is used to remove characters from a STRG data item, the
characters remaining to the right of the deletion are then shifted to the left

to fill the gap caused by the deleted characters, and spaces are used to fill
from the right.

The Condition Register 1s not affected by the execution of this instruction.
The instruction format is:=~
DLETE String, Start, No.
String - is the character string which contains the item to be deleted

Start = this is a binary data item giving the character position for the
deletion to begin

No. ~ this is a binary data item and contains the number of characters
to be deleted :

The pointer (Start) assumes that the first byte location is zero, so to access
the second byte the pointer must have a value of one.

Example of the DLETE instruction

MOVE S1,=W"6’
MOVE 82,=W 4’
DLETE DEST,S1,52

If the initial contents of DEST was “‘SMITH MRS PAT”, after the abova sectiom of

program had been executed DEST would contain “SMITH PAT .
The details of this operation are shown below
Delete characters "SHITH «...PAT’ {. is deleted char)

Move rtemaining characters TSMITH PAT....”

-

Fill from right with spaces “SMITH PAT

| _INSTRUCTION | PAGE IN M04 |
| DLETE | 1.4.69 1

CREDIT PPOGRAMMER'S GUIDE

MATCH INSTFRLUCTION

MATCH TEXT1,71,L1,TEXT 2,P2, 1.2

7]
|2
exT2 | Y |
P1
L
TEXTT 77
IF MATCH 0CCURE THEN COND.REG.=0
RESULT:

B

i

¢
o g T)
Z
3
CHARACTERS SEARCHED

LEFIGTH CORRESPONDS
WITH L2)

4.3.10
Cetober 1979

CREDIT PROGRAMMERS GUIDE

4.3.5 The Match imstructiom (MATCH)

The MATCH instruction is used to search for the occurence of a string or partof
a string within another string. The condition register will be set to zero if
a match is found, or 4 1f there is no match.

1f a match occurs then the second operand (Start-1l) will be set to the position
where the match was found; if there was no match then the contents will be
undef iced.

The instruction format is.-—
MATCH String-l, Start-1, Wo.-l1, String-2, Start-2, No.-2

String-1 - is the character string to be searched

Start~! =~ is the position at which the searcn will start in String-l.

No.~1 - is the number of characters to be searched in String-l.

String=Z - is the data item containing the string to be matched.

Start-2 - is a binary data item giving the position in String-2 for the
start of the string that is to be compared with String-l.

No.-2 - is a binary data item cuntaining the number of characters in

String~2 that are to pe matched with String~l. This data item
must contain a number that is less than or equal to Ho.-1l.

The two pointers (Start-l and Start-2) assume that the first character position
is zero.
Example of the MATCH instruction

MOVE Sl,=W"0"

MOVE §2,=W"27°

MOVE 53,=W"3"

MATCH VAL,S1,82,IKP,53,53
BE OK

If VAL contained “001,002,003,004,005,006,007" and INP “ID=005", then after the
MATCH instruction has been executed coantrol will be transferred to the
statement identifier OK and S1 will be sect to "167.

| _INSTRUCTION | PAGE IN MO4 |
1 _MATCH | 1.4.125 |

4,3.11
Octobexr 1979

CREDIT PROGRAMMERS GUIDE

4.4 Branch instructions

An important cousideration when writing any real time application, is that all
potential error situations are detected and handled correctly; te aid the
programmer achieve this objective many CREDIT commands use the Conditicn
Register to record the status after execution.

CREDIT provides a wide variety of branch instructions to transfer control
according to the contents of the condition register. There are also braach
instructions which allow the comparison of two data items and branch if a
certain condition occurs, to branch on boclean data items, indexed branches

and unconditional branches.

The CREDIT Translator produces two kinds of branches:

. Short branches where the destination is within 2535 bytes of the branch
. Long branches for all other situations.

Short branches have a one byte displacement for holdimg the destinaticn

address; however a long branch has an index to T:BAT (the long branch rable)}
where the address of the destination is held.

40401
Oz tober 1979

CREDIT PROGRAMMER'S GUIDE

BRANCH INSTRUCTIONS

SHORT BRANCHES LONG BRANCHES
UP TO 255 CHARACTERS ALL MEMORY
ADDRESSES
SHORT BRANCH (SB)
LONG BRANCH {LB)

COMPARE AND BRANCH (CB)
INDEXED BRANCH {1B)
TEXT AND BRANCH (TB)

4.4.2
October 1979

CREDIT PROGRAMMERS GUIDE
4.4.]1 Unconditional branches

The unconditional branch instruction enables the transfer of cont-ol to the
statement label identifier specified in the operand.

The instruction format ig:-
B 0Pl

OPl is the statement label identifier to which the program will branch after
having encountered this instruction.

Example of an unconditional branch

B FRED1

The program will always branch to the statement label identifjer FREDL when
this statement is encountered.

1 INSTRUCTION | PAGE IN MO4 |
! B | 1.4.25 i

4.4.3
October 1973

CREDIT PROGRAMMER'S GUIDE

BRANCH WiTH CONDITION MASK

LB 1, CONT?Y
GR EQU 1
LB GR, CONT1
GR EQu 1
CB GR, INLEN, CBINO, RDERR2
1B INDEX, SYS20, SYS40
4.4.4

October 1979

CREDIT FROGRAMMERS GUIDE

4.4.2 Branch on condition mask

These instructions enable a brauch to be made according to the contents of
a condition mask.

The general format of this instruction is:-

{3B}
{ B} [<COND>,]<statement identifier>
{LB}

If the branch instruction "B’ is used, the Translator decides whether it is a
long or short branch and preoduces the appropriate object code. SB and LB are
the mnemonics for long and short branch respectivly.

The <COND> 1s optional, and if present gives the appropriate comdition mask
for the branch, as shown in the table below; if this field is ommitted then it
becomes an unconditional branch.

| Cond. Cause of this condition
|_Code e
Zero result from arithmetic operation
0 Equality found with Compare instruction
Logical data item had previous value of false
1/0 operation completed satisfactorly
Positive result from arithmetic operation
i Operand-1 greater than Operand-2 in Compare instruction

End of file detected ou I/0 operation

!
|
|
|
I
l
I
|
I
!
|
| Negative result from arithmetic operation
2 | Operand-l less than Operand-2 in Compare instruction
| I/0 error on an T/0 operation
|
f
|
I
I
f
|
I
f
|
|

3 Arithmetic overflow
Beginning or End of device on I/0 operation
4 Inverse of condition code zero
5 Inverse of condition code one
b Inverse of condition cede two
7 Unconditional branch

Example of comditional branch
B 5,L1

This will cause a branch to statement identifier L1 1if the condition mask is
equal to five (negative, or operand one less than or equal to operand two, or
no end of file encountered by I/0 operation)

| INSTRUCTION | PAGE IN MO4 |
1 B b 1.4.25

40405
October 1979

CREDIT PROGRAMMERS GUIDE

4+44,3 Mnemonic branches
To make the branch Instructions easier to use the code can be replaced by a

unemonic branch. The mnemonic branches use the Condition Register to establish
whether or not control ia to be transferred, and can be divided into three

sections:
. Those for use after I1/0 operations

. Those for use after the CMP instruction

« Those for use after arithmetic inscructions

These instructions have only one operand and this contains the statement label
identifier to which control will be transferred, should the condition be

satisfied.

4.4.6
Qctober 1979

CREDIT PROGRAMMERS GUIDE

4.4.3,1 Conditional branch after I/0 instructions

Both input and output instructions cause the Condition Register to be set when
they are executed. It is regarded as good program design to include checks to
detect any errors that have occurred as a result of an input or output
operation, and have routines to handle these situations. If an error has
occurred more detail can be obtained with the XSTAT {nstruction, as shown in
section 6.1.1.

The branch commands available for use after input or output operations are
shown in the table below.

Note:

Not all these conditions can be generated by all I1/0 operations, for example,
EOF coundition will not occur when writing to a display.

The following mnemonics are used for these branches:

BEOF Branch if End of File

BERR Branch if Error

BEOD Branch if End of Device

BNOK Branch if not OK {(Same as BEKR)

BNEOF Branch if not End of File

BNERR Branch if no Erroer

BOK Branch if OK (Same as BNERR)
] INSTRUCTION | PAGE IN MO4 |
| BEOF | 1.4.28 |
i BERR | 1.4.29 |
| BEQD i l.4.26 |
| BNOK | 1.4.39 |
| BNEOF } 1.4.34 |
| BNERR [1.4.35 |
| BOK I 1.4.43 |

4.7

October 1979

CREDIT PROGRAMMERS GUIDE

4.4.3.2 Conditional branch after compare

Two operands may be compared using the CMP command described in section 4.1.6;
as a result of this comparison the Condition Register is set, and can be used
by branch instructions.

These branch instructions have one operand which is the statement identifier to
which control will be passed if the condition defined in the branch mnemoniec

matches that set by the compare.

The example below shows the branch mnemonics that can be used after the compare
instruction.

Example of conditional branching after compare

CMP OLD, NEW COMPARE TWO FIELDS
BE L1 BRANCH TF EQUAL
BG L2 OLD > NEW

B L3 OLD < NEW

If OLD contained the value 5 and NEW the value 5 then control would be passed
to the statement at label L1l. If OLD contained the value 6 and NEW the value 5
then control would be passed to the statement at label L2, otherwise control is
passed to L3 unconditionally since OLD must be less than NEW.

The conditional braunches may be one of the following:

BE Branch if equal (Operand-1 = Operand-2)
BG Branch if greater (Qperand-1 > Qperand-2)
BL Branch if less (Operand-1 < Operand=-2)
BNE Branch 1f not equal {(Operand-1 -= Operand-2)
BNG Branch if not greater (Operand-1 -> Operand-2)

BNL Branch if not less (Operand-1 -< Operand-2)
| INSTRUCTION | PAGE IN M044L
i BE | 1.4.27 |
| BG] 1.4.30]
| BL] 1.4.31 |
) BNE J 1.4.33 |
| BNG | 1.4.36 |
1 BNL | 1.4.37 |

4.4.8

October 1979

CREDIT PROGRAMMERS GUIDE

4.4.3.3 Conditional branch after arithmetic imstruction

After an arithmetic instruction has been obeyed the Condition Register will
contain information about the tesultant value, if it was positive, zero or
negative or if overflow had occurred. The branch inctructions which can be
used after arithmetic instructions are:-

BN Branch 1if result < O
BNN Branch if result > 0 or = 0
BNP Branch if result < Q or = 0
BNZ Branch if result < 0 or > 0
BOFL Branch if overflow occurred
BP Branch if result > 0
BZ Branch if result = 0

Example of conditional branch

The following section is from a prograwm which is being used for processing
binary (BIN)} data items.

MUL AMM, YRATE CONVERTED AMOUNT
BOFL OVF57 OVERFLOW
BNP MC17 NO POSITIVE AMOUNT
MOVE WK1, AMM WORKING STORE VAR.
MUL WK1,=W"175"
BOFL OVF58 OVERFLOW
DVR WK1,=W"100" AMM*1,75
MOVE BAL, WK1 STORE
8 MC18

MC17 MOVE BAL, AMM

MC18 RESULT NOW IN BAL

If AMM contained 1700 and XRATE 450, then after the multiply command had been
executed, the contents of AMM would be undefined, though the overflow bit in
the condition register would have been set. When the branch on overflow (BOFL)
command is encountered a branch would be made to the statement identifier OVF57.

If AMM contained 0 and XRATE 450, then a branch would be made to the statement
identifier MC17.

Following the multiplication of WKl by the coanstant 175 overflow may occur (the
largest binary number that the machine can store is 32767), and a test is made.
If overflow has occurred then a branch would be made to OVFS58. However, as
there is no risk of overflow or division by zero at the DVR command, no checks
follow that instruction.

| INSTRUCTION | PAGE IN MQ4 |
| BN | 1.4.32 i
f BNN | 1.4.38 |
| BNP f 1.4.40 |
| BNZ i l.4.41 |
| BOFL] lo4.42 |
| BP | 14444 |
I BZ 1o 1.4.85]

4.4,9
October 1979

CREDIT PROGRAMMERS GUILIDE

4.b.4 Compare and branch instructions
These instructions are combined compare and branch instructions; but they can
only be used where a short branch would be generated, hence the destination

address of the branch must be within 255 bytes of the current address. If the
destination address is greater then 255 bytes from the current address then the

following section of code could be used.

CMP A,B
BE Ll

However for short branch situations the following combined instruction is used.
CBE A,B,L1
The rules for data types in the compare instructiom also apply to the data
types in the compare and branch instructions. This is a three operand
instruction of the format:-
CB<type> data item 1, data item 2, statement identifier
The first operand must be a data item identifier.

The second operand is either a data item identifier or a literal.

The third cperand is the stactement identifier which will be branched to 1f the
condition specified in the compare and branch instruction is satisfied by the
first two operands.

The type is one of E,G,L,NE,NG,NL and 1is used to form the wmnemonics listad
below.

Examples of the compare and branch instruction

CBL BAL, AMM,QVD Branch to OV if BAL is less than AMM

CBE AMM,MAXL,, SPC1 Branch to SPCl if AMM is equal to MAXL

CBNE LOOP,=W"1",ROUND Branch to ROUND if LOOP is not equal to 1

CBL RATE, IRR, GO Branch to GO 1if RATE is less than IRR

CBG AMT ,FIX,ERR Branch to ERR if AMT ig greater than FIX
CBNG ACC,MIN, READ Branch to READ if ACC is not greater than MIN

| INSTRUCTION | PAGE IN MO4 |
| CRE { l.4.49 {
I CBRG | l.4.51 |
] CBL | 1.4.53 |
| CBNE | 1.4.55]
| CBNG | labe57 |
L CBNL | 1.4.59 |
4. 4. 10

Octobher 1979

CREDIT PROGRAMMERS GUIDE

4.4.5 Test and branch

These instructions can only be used for branching dependent on the condition of
boolean data items, and have the following format:-

command boolean variable, statement identifier

The command can either be test and branch if true (TBT) or, test and branch if
false (TBF).

The first operand specifies the boolean data item on which the decision to
branch or net will be made.

The second operand is the statement identifier to which control will be passed
ghould operand one satisfy the criteria of the command.

Example of the test and branch command

TBT STAT,MCL17

This will cause a branch to statement label MC17, if STAT holds the value TRUE
otherwise the next cousecutive instruction will be obeved.

| IKSTRUCTION | PAGE IN MO4 |
| TBF | l.4.52 |

1 TBT | 1.4.53 |

4.4.11
October 1979

CREDIT PROGRAMMERS GUIDE

4e 4.6 Indexed branch instructions

The indexed branch command (IB) is used to generate a long or short branch to
one of a number of statement labels depending upon the value of an index.

The format of the indexed branch command is :-

IB Index, Label-1, Label-=Z,..... Label~n

Index - is a binary data item containing the index to be used by the branch.

Label-1 etc. - these are a list of statement identifiers to which the program
may branch depending upon the value in the index. If the index held the value
one then this would cause a branch to the statement at Label-1l, if the index
held the value 2 then a branch would be made to the statement at Label-2 and so
on.

If the index contains the value zero, or a value greater than the number of
statement label supplied, then the next consecutive instruction will be
executed.

Example of an indexed branch

I8 SPBINW2, READIN, DUMMEY, KEOI, KTFWD, KTBWD, KTHOME, c
KTLDOWN, KTLEFT ,KTRIGHT , KTUP , KENTER
SUB SPBINW2,=W 14"

SPBINW2 is the binary index used for controlling this indexed branch; where the
program branches to depends on the contents of this data item.

Contents of Statement identifier to which
SPBINWZ control will be passed

1 READIN

2 DIMMEY

3 KEOT

4 KTFwWD

5 KTRWD

6 KTHOME

7 KTLDOWN

8 KTLLFT

9 KTRIGHT

10 KTDWN

11 KTUP

12 KENTER

[f SPBINWZ contains the value zero, or a value greater then twelve then the
next consecutive statement will be execnted, in this case the subtract command.

1 INSTRUCTION | PAGE IN MO4 |
1 18 | 1.4.114 |

badea 1?2
October 1979

