PDOS 2.4 DOCUMENTATION CHAPTER 6¢FLOATING POINT PACKAGE

PAGE 6-1

CHAPTER 6

FLOATING POINT PACKAGE

The PDOS floating point package is a single accumulator,
IBM format, multi-user floating point processor. It
includes all the necessary routines to wWrite assembly
language floating point software, including addition,
subtraction, multiplication, division, load, store, scale
clear, float, normalize, negate, absolute value,
multiplicative inverse, status, clock, and error handling.
Input and output routines are also described in this
chapter.

6.1 FLOATING POINT FORMAT....ccevvereececnnnnccrenncannes 6-2
6.2 FLOATING POINT COMMANDS.......ccceeeennnnrecnncccnnss 6-3
6.2.1 LOADF - LOAD FPAC.......... Cesessesceneres 6-3
6.2.2 STORE - STORE FPAC....ccicuveecnncecnnnses 6-3
6.2.3 FADD - ADD TO FPAC.....cccevvevecccnecsss B3
6.2.4 FSUB - SUBTRACT FROM FPAC.........cc0veeen 6-4
6.2.5 FMUL - MULTIPLY FPAC.........cciuveennenn, 6-4
6.2.6 FDIV - DIVIDE INTO FPAC......ccenverennnss 6-4
6.2.7 SCALE ~ SCALE FPAC......ccvvennne cesessane 6-5
6.2.8 FXOPS O - CLEAR FPAC....cccvveeenananannns 6-5
6.2.9 FXOPS 1 - FLOAT FPAC.....ccvvvennecnnnanen 6-6
6.2.10 FXOPS 2 - NORMALIZE FPAC.................. 6-6
6.2.11 FXOPS 3 - NEGATE FPAC....ccocveveencnnnens 6-6
6.2.12 FXOPS 4 - ABSOLUTE VALUE OF FPAC.......... 6-7
6.2.13 FXOPS 5 - READ FPAC STATUS....... cesvens ..6-7
6.2.14 FXOPS 6 - READ CLOCK TICS.......ce0vee eeed6-7
6.2.15 FXOPS 7 - INVERSE OF FPAC........cccuuunnn 6-8
6.2.16 FXOPS 8 - LOAD ERROR RETURN ADDRESS....... 6-8
6.3 CONVERT DECIMAL TO FLOATING POINT......ccvveeeencnnns 6-9

6.4 CONVERT FLOATING POINT TO DECIMAL.......cvveevnvenes 6-10

Single accumulator, IBM format

L ====

PDOS 2.4 DOCUMENTATION CHARTER 6 FLOATING PUINT PACKAGE PAGE 6-2

6.1 FLOATING POINT FORMAT

The PDOS floating point package is a single accumulator,
IBM format, multi-user floating point processor. The IBM
format consists of a sign bit, 7 bits of exponent or
characteristic (excess 64), end 40 bits of fraction or
mantissa. The resultant number is produced by taking 16
raised to the exponent, times the mantissa. This gives
numbers in the range of 1E-79 to 1E75. Zero is represented
by all 6 bytes being zero rather than just a zero mantissa.

A1l floating point numbers must be normalized for the
floating point operations to work correctly. This means
that the first hex digit of the mantissa must be nonzero.
A1l floating point routines, Wwith the exception of scale,
return normalized numbers.

The floeting point processor is accessed via eight XOP
vectors. Interrupts are disabled during all floating point
operations. The Floating Point Accumulator (referred to as
FPAC) 1is swapped in and out with the task, thus meking the
routines accessible to other tasks.

These XOP vectors are defined as follows:

DXOP LOADF,0 ;LOAD FPAC

DXOP STORE,1 ;STORE FPAC

DXOP FADD,2 ;ADD TO FPAC

DXOP FSUB,3 ;SUBTRACT FROM FPAC

DXOP FMUL,4 ;MULTIPLY FPAC

DXOP FDIV,5 ;DIVIDE FPAC

DXOP SCALE,6 ;SCALE FPAC

DXOP FXOPS,? ;FP MISCELLANEOUS COMMANDS

meEnRNRRmRE

SeeeeeeeecccccccC CCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCC

Y?FFF >FFFF >FFFF = 7.23700557730E75
»0010 >0000 >0000 = 5.39760534693E-79

True zero

Normalization

8 XOP vectors
Interrupts disabled

-

PDOS 2.4 DOCUMENTATION CHAPTER 6 FLOATING POINT PACKAGE

6.2 FLOATING POINT COMMANDS

6.2.1 LOADF - LOAD FPAC

Format: LOADF <general address)

The LOAD FPAC routine loads the floating point accumulator
with the six bytes pointed to by <general address>. No

error checking is done by this operation.

6.2.2 STORE - STORE FPAC

Format: STORE <general address)

The STORE FPAC routine stores into user memory the six byte
floating point . accumulator. The address at which FPAC is

stored is specified by <general address>.

6.2.3 FADD - ADD TO FPAC

Format: FADD <general address)

The ADD TO FPAC routine adds a six byte floating point
number, pointed to by <general address)>, to the contents of
the floating point accumulator. Both the number and FPAC
must be normalized floating point numbers.

The numbers are first shifted so that the exponents agree.
Then the fractional parts are converted to 2's compliement, 6
byte fractions and added together. Finally, the result is
converted back to a 1's complement number, the corrected
exponent and sign bit added, and the number is then
normalized again.

e —————

PAGE 6-3
LOADY LI RO,»4110 ,GET FP1
CLR R1
CLR R2
LOADF RO ;LOAD FPAC
FMUL aFP10 JMULTIPLY BY 10
STORE QTEMP ,SAVE IN TEMP
FP10 DATA >41A0,>0000, >0000
TEMP BSS 6
INCRM MPY 3C6,R1 JGET CORRECT INDEX
FADD JTAB(2) ,ADD CONSTANT
STORE RO JRETRIEVE #
Cé DATA 6
TAB DATA »4110,>0000, >0000

DATA >4120,>0000,>0000
DATA >4130,>0000, >0000
DATA »4150,>0000, >0000
DATA >4180,>0000, >0000

- nEsRgaRnes
PDOS 2.4 DOCUMENTATION CHAPTER 6 FLOATINB POINT PACKAGE _PAGE 6-4

---------- S ===z

ﬂ'!\
6.2.4 FSUB - SUBTRACT FROM FPAC
Format: FSUB (general address) LOADF @B ,A=B-C
FSuB aC JSUBTRACT C
The SUBTRACT FROM FPAC routine subtracts a six byte STORE 3A ,STORE
floating point number pointed to by <general address> from coes
the contents of the floating point accumulator. Both
numbers need to be normalized floating point numbers. A BSS 6
B DATA 14210, >0000, >0000
The sign of the operand is toggled and then the two numbers c DATA »C120,>0000, 0000
are added. This 1is done by shifting the fractional perts
until the exponents agree. Then the fractional pearts are
converted to 2's complement, 6 byte fractions and added
together. Finally, the result is converted back to a 1's
complement number, the corrected exponent and sign bit
added, end the number is then normalized again.
6.2.5 FMUL - MULTIPLY FPAC
-~
Format: FMUL <general address> LOADF 9A JA=A*10
FMUL 3FP10
The MULTIPLY FPAC routine multiplies the contents of the STORE 3A
floating point accumulator by the 6 byte number pointed to .
by ¢(general address)>. The product is obtained by adding
exponents and doing a three Word unsigned multiply. The A BSS 6
product is then normalized. FP10 DATA »41A0, >0000, 0000
6.2.6 FDIV — DIVIDE FPAC
Format: FDIV <general address> LOADF @A ,A=A/10+5
FDIV 9FP10
The DIVIDE FPAC routine divides the contents of the " FADD 3FPS
floating point accumulator by the 6 byte number pointed to STORE 8A
by <general address>. The quotient is obtained by -
subtracting exponents and doing a three word unsigned '
divide. The quotient is then normalized. A BSS 6

FP5 DATA »4150,>0000, 0000
FP10 DATA >41A0,>0000,>0000

(ﬂ"

izzzczzzzzzzzsz

POOS 2.4 DOCUMENTATION CHAPTER 6 FLOATING POINT PACKAGE PAGE 6-5
6.2.7 SCALE - SCALE FPAC
Format: SCALE <general address> * RETURN 16-BIT 2'S COMPLEMENT INTEGER
.
The SCALE FPAC routine adjusts the floating point FIX LOADF *R2 ;LOAD FPAC
accumulator so that the exponent matches the left byte of SCALE 3H4600 sSCALE
the word pointed to by <general address>. If the exponent STORE RO ,GET RESULT
of FPAC is greater than the scale exponent, a floating point SLA RO,1 JNEGATIVE?
error occurs. JNC FIX2 N
NEG R1)Y, NEGATE #
The SCALE FPAC routine is useful in changing floating point *
to fixed point. With a normalized floating point number, FIX2 RT JR1=INTEGER PART
the mantissa is a positive fraction less than 1. By scaling *
FPAC to a known exponent, the decimal point is set anywhere H4600 DATA »4600 ,SCALE FACTOR
Within the number.
A1l of the following floating point numbers are equivalent
to the number 1, although not necessarily normalized:
»4110 >0000 >0000
Y4201 >0000 >0000
»4300 >1000 >0000
»4400 >0100 >0000
»4500 >0010 >0000
»4600 >0001 >0000
Y4700 >0000 »>1000
»4800 >0000 >0100
»4900 >0000 >0010
>4A00 >0000 >0001
Notice that when scaling to exponent »4A, the number
becomes an integer as the fractional part is lost to the
right.
6.2.8 FXOPS 0 — CLEAR FPAC
Format: FXOPS O CLRFP FXOPS 0 JCLEAR FPAC

The CLEAR FPAC routine sets the floating point accumulator
to all zeros.

PDOS 2.4 DOCUMENTATION

o oo o ot

——— ——————

6.2.9 FXOPS 1 - FLOAT FPAC

Format: FXOPS 4

The FLOAT FPAC routine converts a 2's complement, 16-bit
integer to a 48-bit floating point number. The first word
of FPAC must be zero; the second Word is loaded with the
16-bit number.

6.2.10 FXOPS 2 - NORMALIZE FPAC

Format: FXOPS 2

The NORMALIZE FPAC routine shifts the fractional part of
FPAC left and decrements the exponent until the first hex
digit of the fraction 1is nonzero. This constitutes a
normalized floating point number.

6.2.11 FXOPS 3 — NEGATE FPAC

Format: FXOPS 3

If FPAC is nonzero, NEGATE FPAC toggles the sign bit.

SRTTTESTTEnREEEskRuEs

CHAPTER 6 FLOATING POINT PACKAGE

PAGE 6-6

FLOAT

FPNUM

INTFP

H4A00

CLR RO

MOV aNUM,R1
LOADF RO
FXOPS 1
STORE 3FPNUM

DATA 100
8SS 6

LOADF aNUM
SCALE aH4A00
FXOPS 2

BSS 6
DATA >4A00

JCLEAR HIGH WORD

JGET NUMBER
;LOAD FPAC
JFLOAT
,STORE

,FLOATING POINT RESULT

;LOAD NUMBER
JREMOVE ANY FRACTION
JNORMALIZE AGAIN

* FRACTION = NUM - INT[NUM]

*
FRAF

H4ACO

LOADF aNUM
SCALE aH4A00
FXOPS 2
FX0PS 3
FADD aNUM

BSS 6
DATA >4A00

;LOAD NUMBER
;REMOVE FRACTION
;NORMALIZE AGAIN
SNEGATE

sADD NUMBER

e - s e --—----:::

POOS 2.4 DOCUMENTATION CHAPTER-6 FLOATING POINT PACKAGE

PAGE 6-7

————

6.2.12 FXOPS 4 — ABSOLUTE VALUE

Format: FXOPS 4
The ABSOLUTE VALUE function takes the absolute value of

FPAC. 1f FPAC is negative (sign bit=1), then FPAC is
negated.

NUM
FNUM

6.2.13 FXOPS 5 — READ FPAC STATUS

H4600

Format: FXOPS 5

OUT: (R2) = FPAC
Status = LT, EQ, GT

The READ STATUS routine returns in the user status register

the sign of FPAC. An EQUAL status is returned if FPAC is L100
zero, GREATER THAN if FPAC is positive, and LESS THAN if

FPAC is negative. Register R2 is returned with the address FA
of FPAC. ' FB

6.2.14 FXOPS 6 — READ CLOCK TICS

Format: FXOPS 6
The READ CLOCK TICS routine loads FPAC with the 2 word tic

counter and converts it to a floating point number. The tic
counter is incremented every 1/126th of a second.

TEMP

LOADF aNUM
FXOPS 4
SCALE 3H4600
STORE RO
MOV R1,3FNUM

BSS 6
BSS 2

DATA >6400
LOADF 3FA
FSUB aFB
FXOPS 5
JLT L1100

BSS 6
BSS 6

- FXOPS 6

STORE aTEMP

FXOPS 6
FSUB QTEMP

BSS 6

,LOAD NUMBER

JABSOLUTE VALUE

;SCALE
JGET #
;SAVE

,IF A<B: GOTO 100

;A<B?
;Y

JREAD CLOCK TICS

;SAVE

,READ CLOCK AGAIN
,GET ELAPSED TIME

PDOS 2.4 DOCUMENTATION CHAPTER 6 FLOATING POINT PACKAGE

------ == SSsssssssssssusaszuss

Su=BES

6.2.15 FXOPS 7 - INVERSE OF FPAC

Format: FXOPS 7
The INVERSE OF FPAC routine tekes the multiplicative

inverse of FPAC. This is equivalent to dividing one by FPAC
and putting the result back in FPAC.

6.2.16 FXOPS 8 — LOAD ERROR RETURN ADDRESS

Format: FXOPS 8
IN: RO = Error trap address

The SET ERROR RETURN ADDRESS routine sets the error trap

address for all floating point errors. This is initially ERTRP

set to zero, which causes the floating point processor to
ignore errors. The error address is passed in register RO.
If an error occurs during a floating point operation,
control is passed to the error trap address.

The error trap address is swepped with the task and thus
each task has its own error trap routine. FPN
ERM1

LOADF aNUM ;LOAD NUM
FXOPS 7 ;TAKE INVERSE

/

LI RO,ERTRP ,GET ERROR TRAP ADDRESS

FXOPS 8 ;SET IN FP PROCESSOR
FMUL 3FPN ;CONTINUE
XPMC ;FP ERROR
DATA ERM1
MOV RO,R1
XCBD :CONVERT
XPLC iPRINT
BSS 6

BYTE >0A,>0D

TEXT 'FLOATING POINT ERROR='
BYTE 0

EVEN

PDOS 2.4 DOCUMENTATION

CHAPTER 6 FLOATING POINT PACKAGE

PAGE 6-9

6.3 CONVERT DECIMAL TO FLOATING POINT

Module: FPINP:0BJ

Format: BLWP @FPINZ
JL = No number
JH = Number)
JEQ = Number w/o null delimiter

Registers: IN R1 = Pointer to string
OUT RO = Delimiter
* (R2) = Updated pointer
FPAC = Number

Included with a PDOS system is the object file 'FPINP:0BJ'.
This relocatable module is linked with your floating point
routines and used to convert an ASCI1 string of characters
to a floating point number. The converted number is
returned in the floating point accumulator.

The entry vector is the external definition (DEF) label
'FPINZ'. Register R1 passes the address of the ASCII string
to the module. Register RO is returned with the number
delimiter and Register R1 is updated.

The status register reflects the success of the conversion.
If it is 1low, then no number conversion was possible. If
it is equal, than a number was converted to floating point
but was not terminated with a null. The offending character
is returned in register RO. If it 1is high, then a
successful conversion wWas completed and register RO is
returned Wwith a zero.

The module is called via a °'BLWP dFPINZ'. An internal
Workspace 1is defined as a 32 byte data section (DSEG) ares.
The folloWwing is an example using the program created at the
right:

. TEMP2

ENTER NUMBER:100
BINARY=426400000000
ENTER NUMBER:3.1415926
BINARY=413243F69A25
ENTER NUMBER:1.23E10
BINARY=492002318000
ENTER NUMBER: 123AC
CONVERSION ERROR!
ENTER NUMBER:

.SF TEMP

START

NUMBOK

MESO1

MESO2

MESO3

.CT (ASM TEMP,TEMP1),10

LINK

REF FPINZ
DXOP FXOPS,?7

XPMC
DATA MESO1
XGLU
BLWP IFPINZ
JH NUMBOK
XPMC
DATA MESO2
JMP START

XPMC

DATA MESO3
FXOPS 5
MOV *R2+,R1
XCBH
XPLC
MOV *R2+,R1
XCBH
XPLC
MOV *R2Z,R1
XCBH
XPLC
JMP START

BYTE >0A,>0D

JDEFINE ENTRY
,MISCELLANEOUS

,OUTPUT PROMPT
,GET LINE
;CONVERT TO FP
;0K

,ERROR

;TRY AGAIN
,OUTPUT 'BINARY='
;GET FPAC ADDRESS
;CONVERT TO HEX
;OUTPUT 1ST WORD

;OUTPUT 2ND WORD

;OUTPUT 3RD KORD

TEXT 'ENTER NUMBER:'

BYTE 0
BYTE >0A,>0D

TEXT 'CONVERSION ERROR!’

BYTE O
BYTE »0A,>0D

TEXT 'BINARY='

BYTE O
END START

LINKER R2.4

*12,2

WAS 0000
*0, TENP2
*1, TENP1
*1,FPINP:0B.

*6

START TAG = >0000

*7

PDOS 2.4 DOCUMENTATION

CHAPTERié.ELQATINGJPOINT PACKAGE PAGE 6-10

SEITTITITIISES

6.4 CONVERT FLOATING POINT TO DECIMAL

Module: FPOUT:0BJ
Format: BLWP QFPOINZ

Registers: IN RO,R1 = 32 bit 2's complement number
(R2) = Qutput mask (O=format free)

OUT (R2) = ASCII converted string

Format: BLWP aFPOFPZ

Registers: IN (RO)
(R2)

48 bit floating point number
Output mask (O=format free)

"

OUT (R2) = ASCII converted string

A floating point number or a two word 2's complement fixed
point number 1is converted to an ASCII string by the
relocatable object module 'FPOUT:0BJ'. The output is format
free or formatted, according to a conversion mask.

The relocatable module has two entry vectors ‘FPOINZ' and
‘FPOFPZ*. An 80 byte data segment (DSEG) workspace area
holds the internal registers and cheracter buffer.

A two word 2's complement number in registers RO and R1 is
converted to an ASCII string by the entry vector 'FPOINZ'.
1f register R2 is zero, then a format free string pointer is
returned in R2. If R2 is nonzero, then the conversion mask
pointed to by R2 is used in formatting the number and R2 is
returned With a pointer to the string.

A three word floating point number pointed to by register
RO is converted to an ASCI1 string by the entry vector
‘FPOFPZ'. 1f R2 is nonzero, then the conversion mask
pointed to by R2 is used in formatting the number.
Otherwise, a format free conversion is done. In either
case, register R2 is returned with a pointer to the
converted string.

Formatting allons numbers to be right justified, have a
floating sign, dollar sign, or angle brackets, or commas and
periods inserted. Numbers are rounded on the last converted
digit.

.SF TEMP

* FPOFP EXAMPLE
REF FPOFPZ
DXOP LOADF,0 ,LOAD FPAC
DXOP FMUL,4 JHULTIPLE #
DXOP FXOPS,? ,MISCELLANEOUS

START LOADF aFP1 ;LOAD 4.0
FMUL aFP2 ;X ATN 1
FXOPS 5 ,GET ADDRESS
MOV RZ,RO s (RO)=RESULT
LI R2,MASK ~ ;POINT TO MASK
BLWP JFPOFPZ ,CONVERT
MOV RZ,R1
XPLC JPRINT LINE
XEXT JRETURN

FP1 DATA >4140,>0000, >0000
FP2 DATA >40C9,>0FDA, >A220
MASK TEXT 'SSS5.999 999 999 999°
BYTE O
END START
.ASM TEMP,TEMP1
ASM R2.4
SRCE=TEMP
OBJ=TEMP1
LIST=
ERR=
XREF=

END OF PASS 1

0 DIAGNOSTICS
END OF PASS 2

0 DIAGNOSTICS
.LINK

LINKER RZ.4

*12,2

WAS >0000

*0, TEMP2

*1, TEMP1
*1,FPOUT:0BJ

*6

START TAG = >0000
*7

.TEMP2 3.141 592 653 590

PDOS 2.4 DOCUMENTATION

CHAPTER 6 FLOATIﬂG POINT PACKAGE

PAGE 6-11

<

(6.4 CONVERT FLOATING POINT TO DECIMAL continued)

Format characters are defined as follows:

Character Digit holder No digit

9 Yes Space

0 Yes 0

$ Yes Floats $

S Yes Floats sign

4 Yes Floats ¢ on negative
) No > on negative

E No Print sign

. Decimal point

, Prints only if preceded by digit

>

Replaced with period

A digit holder is defined as a position where a digit can
be stored. A floater appears only once and to the left of
the first digit. If there are not enough digit holders to

handle the edited number,

the format is replaced With

asterisks. A1l non-formatting characters are transferred to
their corresponding positions in the output string.

PDOS 2.4 DOCUMENTATION

i

CHAPTER B FLOATING POINT PACKAGE

s=zzosssss

PAGE 6-12

)

