
===
PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRlHITlVES PAGE 5-1
===~==

CHAPTER 5

PODS ASSEMBLY PRIMITIVES

PODS assembly primitives are assembly language system calls
to PODS. They consist of one Hord XOP instructions Hh1ch
use XOP vectors 13, 14, and 15. Host calls have error
returns, Hhile others return only status or do not return at
all.

PODS calls are divided into four categories: namely, 1)
system, 2) console l/0, 3) files, and 4) support primitives.

5.1 PDOS ASSEMBLY LANGUAGE CALLS .••.•••.•.••...••••••..•• 5-3

5.2 SYSTEM CALLS ... 5-5

5.2.1 XCTB- CREATE TASK BLOCK .••....•.......... S-5
5.2.2 XERR- MONITOR ERROR CALL ..••......•••..•. S-7
5.2.3 XEXT- EXIT TO HONITOR ..•..•...•••........ S-7
5.2.4 XFTD- FIX TIME & DATE .••••••..••••.•..... S-8
5.2.5 XGHL- GET MEMORY LIHITS .•.........•••.••• S-8
5.2.6 XGTH- GET TASK HESSAGE .•••........•...... 5-9
5.2.7 XISE- !NIT SECTOR••••••....•..•••.• 5-10
5.2.8 XKTB- KILL TASK BLOCK ••.•••...•.••.....• 5-11
5.2.9 XLKT- LOCK TASK •••.....•••.•.•••••...••. 5-12
5.2.10 XROT - READ DATE 5-12
5.2.11 XRSE- READ SECTOR ..••..••.•..•...•••.... 5-13
5.2.12 XRTH - READ TIME 5-14
5.2.13 XRTS- READ TASK STATUS ..•••••...••..•..• 5-14
5.2.14 XSEF- SET EVENT FLAG••..•••...•••.•. S-15
5.2.15 XSTH- SEND TASK MESSAGE •..•......••••••• 5-16
5.2.16 XSUI- SUSPEND UNTIL INTERRUPT•..•.• S-17
5.2.17 XSHP- SHAP TO NEXT TASK •...............• S-18
5.2.18 XTEF- TEST EVENT FLAG .•..•......••...••• S-18
5.2.19 XUDT- UNPACK DATE •••..•••••••...•.....•. 5-19
5.2.20 XULT- UNLOCK TASK•.....•••••••...• S-19
5.2.21 XUTH- UNPACK TIHE••.....•..••..• 5-20
5.2.22 XHDT- HRlTE DATE ...•..•..•.....•.••••••• S-20
5.2.23 XHSE- HRITE SECTOR••...••...•.. S-21
5.2.24 XHTH- HRITE TIHE••..•......•..•.. S-22

5.3 CONSOLE 1/0 PRIMITIVES•.•..• ~ 5-23

5.3.1 XBCP- BAUD CONSOLE PDRT •..•.......•••••• 5-23
5.3.2 XCBC- CHECK FOR BREAK CHARACTER .•.••••.• S-24
5.3.3 XCLS- CLEAR SCREEN••.•.•.•.••.••••• S-25
5.3.4 XGCC - GET CONSOLE CHARACTER CONOITIONAL.5-26
5.3.5 XGCR- GET CONSOLE CHARACTER •...•••...... 5-27

. . . . ~ ' . . . -==-===- ---- . =-' ----=======================~-======~==~--===================================
PDOS 2. 4 DOCUMENTATION PAGE 5-Z

.
===----===============-=======--==

(CHAPTER 5 PDOS ASSEHBLY PRIMITIVES continued)

5.3.6 XGLB- GET LINE IN BUFFER •••••••••••••••• 5-ZB
5.3.7 XGLH - GET LINE IN MONITOR BUFFER •••••••• 6-29
5.3.8 XGLU - GET LINE IN USER BUFFER ••••••••••• 5-30
5.3.9 XlPL- INTERRUPT DRIVER PUT L!NE ••••••••• 5-31
5.3.10 XPBC- PUT USER BUFFER TO CDNSOLE •••••••• 5-32
5.3.11 XPCC- PUT CHARACTER TO CONSOLE •••••••••• &-33
5.3.12 XPCL- PUT CRLF TO CONSOLE ••••••••••••••• 5-34
5.3.13 XPLC- PUT LINE TO CONSOLE ••••••••••••••• 5-35
5.3.14 XPHC- PUT MESSAGE TO CDNSOLE •••••••••••• 5-36
5.3.15 XPSC- POSITION CURSOR ••••••••••••••••••• 5-37
5.3.16 XTAB - TAB •••••.••••.•••••••••••••••••••• 6-38

5.4 FILE PRIH!TIVES ••••••••••••.•••••••••••••••••••••••• S-39

5.4.1 XAPF - APPEND FILE ••••••••••••••••••••••• 5-39
5.4.2 XCFA- CLOSE FILE HITH ATTR!BUTES •••••••• 5-40
5.4.3 XOIF - OfAIN FILE ••.•.•••••••.•••••••••••• 5-41
5.4.4 XCLF- CLOSE FILE ••••••••••.••••••••••••• 6-42
5.4.5 XCPY- COPY FILE ••••••••••••••••••••••••• 5-43
5.4.6 XDFL - DEFINE FILE 6-44
5.4.7 XOLF- DELETE FILE •.••.•••••••••••••••••• 5-45
5.4.8 XFFN- FIX FILE NAHE ••.•••••••.•••••••.•• 5-46
5.4.9 XLOF- LOAD FILE •.•••••.••••••••••••••••• 5-47
6.4.10 XLFN- LOOKUP FILE NAHE •••••••••••••••••• &-48
5.4.11 XlkF- LOCK FILE •••••••••••••.••••••••••• &-49
6.4.12 XLST- LIST FILE DIRECTORY •••.••••••••••• s-50
5.4.13 XNOP- OPEN SHARED RANOOH FILE ••••••••••• ~1
5.4.14 XPSF- POSITION FILE ••••••••••••••••••••• 5-52
5.4.15 lCRBF - READ a.OCk •••••••••••••••••••••••• 5-53
5.4.16 XROE- READ DIRECTORY ENTRY •••••••••••••• 5-54
5.4.17 XRON- READ DIRECTORY NAHE ••••••••••••••• 5-55
5.4.18 XRFA- READ FILE ATTRIBUTES •••••.•••••••. 5-66
5. 4. 19 XRLF - READ LINE ••••••••••••••••••••••••• 5-57
5.4.20 XRNF- RENAME FILE •••••••••.••••••••••••• 5-58
5.4.21 XROP- OPEN READ ONLY RANDOM FILE •••••... 5-59
5.4.22 XROO- OPEN RANDOM FILE •••••••••••••••••• 5-60
5.4.23 XRST- RESET FILES ••••••••••••••.•••••••• 5-61
5.4.24 XRHF- REHIHO FILE ••••••••••••••••••••••• 5-61
5.4.25 XSOP- OPEN SEQUENTIAL FILE •••••••••••••• 5-6Z
5.4.26 XSZF- SIZE DISk ••••••••••••••••••••••••• 5-63
5.4.27 XULF- UNLOCk F!LE •••••••••••••••• , .••••• S-64
5.4.28 XHBF- HRITE BLDCk ••••••••••••••••••••••• 5-65
5.4.29 XHFA- HRITE FILE ATTRIBUTES ••••••••••••• S-66
5.4.30 XHLF - HRITE LINE •••••••••••••••••••••••• S-67

5.6 SUPPORT PRIHITIVES •••••.••.•...•••.•••.••••••••••••• 5-68

5.5.1 XCBO- CONVERT BINARY TO DECIHAL ••••••••• 5-6B
5.5.2 XCBH- CONVERT BINARY TO HEX ••••••••••••• 5-6B
5.5.3 XCBH - CONVERT TO DEC!HAL H/HESSAGE ... , •• 5-69
5.5.4 XCDB- CONVERT DECIMAL TO BINARY ••••••••• 5-70
5.5.5 XGNP- GET NEXT PARAHETER •••.•••••••••••• 5-71

""' I

r--
1

==---·=~===
PDOS 2.4 DOCUHENTAT!ON CHAPTER 5 PODS ASSEMfl.'t PIWUtlVES PAGE 5-3

==~=====--==

5 .l PDOS ASSEMBLY LANGUAGE CALLS

PDOS assembly primitives are one HOrd XOP instructions
Hhich use XOP vectors 13, 14, and 15. Host calls have error
returns, while others return only status or do not return at
all. Calls Hith error returns continue program execution
tHO bytes beyond the call for a normal return, Hhile an
error condition returns immediately after the call
instruction. This facilitates an immediate error report
primitive or a 'JHP' to an error routine.

PODS COIIIIII8nd primitives can be grouped according to the
register Horkspaces they use. Level 0 calls are referred to
as subroutines and use your program· s Horkspace for their
registers and parameters. These commands are higher level
primitives Hhich call disk primitives Hithin PODS. The call
is equivalent to a Branch and Link (BL) instruction.

Level 1 primitives are for character input and output.
These primitives use the level 1 Horkspace contained in each
task control block. Registers R6 through R10 of this
Horkspace are special variables used in console HOrk. None
of these primitives have an error return.

Level 2 primitives are the file manipulation routines.
They handle defining, deleting, reading, Hriting,
positioning, locking, and other such file utilities. The
level 2 HDrkspace of the task control block is used to
transact these commands. Host of these primitives have an
error return.

Only one task can be executing a level 2 primitive at a
time. A lock flag located at >2FE6 is set Hhen a task
enters a level 2 primitive and is reset Hhen it returns to
the caller. All other tasks making a level 2 call SHap
Hhile HBiting for the flag to be reset.

Level 3 primitives are system subroutines and disk access
progr8111S. These include data conversion routines as Hell as
disk read, Hrite, and initialize sector programs contained
in the boot area.

A second lock flag located at >2FEB is used Hith the disk
programs. This makes these calls autonomous and prevents
multiple commands from being sent to the disk controller.
lt is the responsibility of the disk programs to clear this
flag before exiting.

CALLX Ll R1,FlLEN
XSOP

JHPERROR
HOV R1,aSL TN

Level 0 commands:

; GET FlLE NAME
;OPEN FlLE, ERROR?
;Y
;N, SAVE SLOT I

XAPF,XCHF,XCPY,XGHL,XLOF,XLST,XRST
XSZF,XFFN,XBCP,XGLB,XGLH,XGLU,XRDE
XRDN,XTAB,XKTB

level 1 commands:

XCBC,XGCC,XGCR,XPBC,XPCC,XPCL
XPlC,XPHC,XCLS,XPSC,XlPL

Level 2 commands:

XDFL,XDLF,XROO,XROP,XSOP,XNOP,XCLF
XCFA,XRBF,XRLF,XHBF,XHLF,XPSF,XRHF
XRFA,XHFA,XRNF,XLKF,XULF

Leve 1 3 commands:

XlSE,XRSE,XHSE,XRSZ,XGNP,XRTH
XHTH,XRDT,XHOT,XFTD,XCBO,XCBH
XCBH,XCOB,XUDT,XUTH,XLFN,XCTB
XSTH,XRTS

=================================::::::;:::7>1!!1!:;:1;'41~1:1--==-=--====---==

PODS 2.4 DOCUHENTATION CHAPT~ :s 'PD0S:<ASSEHBL Y PRlHlTlVES PAGE 5-4

==--==

(5.1 PODS ASSEMBLY LANGUAGE CALLS continued)

Level 4 primitives use the clock Horkspace. They are for
testing and setting events, suspending end locking tasks,
and for swapping and returning errors.

These primitive levels are summarized as follOHS:>

LEVEL: LV D LV 1 LV 2 LV 3 LV 4
XDP: XOP 13 XOP 13 XDP 14 XDP 15 XOP 15

HORKSPACE: BL L1H LZH L3H CLKHS

CALL: XAPF XCBC XOFL* X!SE+ XSHP
XOIF XGCC XOLF* XRSE+ XSHR
XCPY XGCR XROO* XHSE+ XSER
XGHL XPBC XRDP* XRSZ+ XERS
XLOF XPCC XSOP* XGNP XERR
XLST XPCL XNOP* XRTH XEXT
XRST XPLC XCLF* XHTH XSEF
XSZF XPHC XCFA* XROT XSUI
XFFN XCLS XRBF* XHOT XTEF
XBCP XPSC XRLF* XFTO XLKT
XGLB XIPL XHBF* XCBD XULT
XGLH XHLF* XCBH>
XGLU XPSF* XCBH
XROE XRHF* XCOB
XRON XRFA* XUOT
XTAB > XHFA* XUTH
XKTB XRNF* XLFN
XFFE XLKF* XCTB

R6=CNT XULF* XSTH
R7=PRT XRTS
R9=1HP

R10=UNT

* Level Z lock
+ Level 3 lock

THS9900 registers are designated by RO through R15.
Control characters appear as either an up arrOH (")
preceding a alphabetic character or as tHO hexadecimal
characters betHeen angle brackets. Special characters such
as carriage return, line feed, or escape have special
abbreviations in angle brackets.

All calls return to the next Hord folloHing the XOP, except
Hhere an error return is noted in the format. A feH special
calls also set the status register upon return. Such calls
allOH the user to select the type of jump required to handle
the results.

Lave 1 4 COIIIIII8nds:

XSHP,XSHR,XSER,XERS,XERR,XEXT
XSEF,XSU!,XTEF,XLKT,XULT,XGTH

Registers = RO-R15

'"C :: >03
<LF> = >OA
<CR> = >00

<esc> = >18

XAPF
error <== Error return

<== Normal return

·""'J

==~=~==?~==
PODS 2.4 DOCUMENTATION CHAPT~R 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-5

===~=;==?;=~~~===

5.2 SYSTEM CALLS

5 • 2 .1 XCTB - CREATE TASK BLOCK

Hnemon i c: XCTB
Value: >2FOO

f'ormat: XCTB
error

Registers: IN RO = Task size
(R1) = Task command line pointer
R2 = Task time
R3 = l/0 port
R4 = Optional loH memory pointer
R5 = Optional t:ligh memory pointer

OUT RO = Spawned t"sk #

The CREATE TASK primitive places a neH '.task entry in the
PODS task list. Memory for the new task comes from either
the parent task or the system memory bit map. Register RO
controls the mode of the neH task as Hell as the task size.

If register RO is positive, then the first available
contiguous memory block equal to RO (in K bytes) is
allocated to the neH task. This memory comes from any page
or map, but must be contiguous, If there is not a block big
enough, then the upper memory of the parent task is
allocated to the neH task. The parent task's memory is then
reduced by RO x 1K bytes. Register R1 points to the neH
task command line. If R1=0, then the monitor is invoked.

If register RO is zero, then registers R4 and R5 specify
the neH task's memory limits in the current map or page.
Register R1 specifies the task's starting PC.

If register R0=-1, then registers R4 and R5 specify the neH
task's memory limits in the current map or page. Register
R1 points to the neH task command line. (If RO=O, then the
monitor is invoked.)

If register R0<-1, then the complement of register RO
specifies the neH page, R4 and R5 specify the neH task's
memory limits, and R1 points to the neH task command line.

SETO RO
LI R1,FILEN
Ll R2,1
CLR R3
HOV iH10C(9) ,R4
MOV R4,R5
AI R4,->0400
XCTB

JHP ERROR
HOV RO,TASKN

;USE CURRENT PAGE
;GET FILE NAME
;1 TIME PERIOD
;USE PHANTOM PORT
;GET EUH
;SET END
;SET BEGINNING (1K)
;CREATE TASK
;PROBLEM
;SAVE TASK NUMBER

If RO>O then: RO=Task size
(R1)=Task command line

(O=Monitor)

If RO=O then: R1=Program PC
R4-R5=NeH task memory limits

of current map or page

If R0=-1 then: (R1)=Task command line
(O=Honitor)

R4-R5=NeH task memory limits
of current map or page

If R0<-1 then: -R0-1=NeH task memory page
(R1)=Task command line

(O=Monitor)
R4-RS=NeH task memory limits

of current map or page

=--===================================~===========---==-===================================
PDOS 2.4 OOCUHENTATION CHAPTER 6 A:ioS ASSEMBLY PRIMITIVES PAGE 5-6

==============--===--===--:=================····==--======================================

(5.2.1 XCTB- CREATE TASK BLOCK continued)

The comund 1 ine is transferred to the spaHned program via
a systf!lll message buffer. The uxiiiiUIII length of a coJIIIIInd
1 ine is 50 characters. Hhen the task is scheduled for the
hrst time, the •ssage buffers are searched for a COIIIIII8nd.
Messages Hith a source task equal to -1 are considered
COIIIIIands and IIOVed to the task • s monitor buffer. The task
0.1 then processes the 1 i ne. 1 f no co.and IIISsage is
found, then the 110nitor is called directly.

Register R2 specifies the number of clock tics the neH task
executes each time it is scheduled. This value is in
1/125ths of a second but can be changed by the BF1X utility.

Register R3 specifies the 1/0 port to be used by the neH

task. 1f register R3 is positive, then the port is
avanable for both input and output. lf register R3 is
negative, then the port is used only for output. lf
register R3 is zero, then no port is assigned. Only one
task uy be assigned to any one input port Hhile many tasks
uy be assigned to an output port. Hence, a port is
allocated for input only if it is available. An invalid
port assignment does not result in an error.

Finally, the spaNned task· s ntJIIIber is retl.l"ned in register
RO to the parent task. This can be used later to test task.·
status or to k i 11 the task.

Possible Errors:

72 = Too many tasks
73 = Not enough memory

A2=Cloek tics/time slice

Rl=l/0 part

lf AM, then phantOIII port (no 1/0)

lf R3)0, then port is used for 1/0

lf R3<0, then port is used for output only

==~====;===
PDOS 2.4 DOCUMENTATION CHA~TER' 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-7

=========--===

5.2.2 XERR- MONITOR ERROR CALL

Mnemonic: XERR
Value: >2FC4

Format: XERR

Registers: IN RO = Error code

The MONITOR ERROR CALL primitive returns the ·t~sk to the
~OS monitor and passes an error code in register RO. PDOS
prints 'PDOS ERR', folloHed by the decimal error number.

Possible Errors: None

5.2.3 XEXT - EXIT TO MONITOR

Mnemonic: XEXT
Value: >2FC5

Format: XEXT
(exits to monitor)

The EXIT TO MONITOR primitive returns a user program to the
PODS monitor. PDOS replies Hith a <LF>, <CR>, <bell>, and a
·.·prompt. The latter tHo characters are changed by the
BFIX utility.

Possible Errors: None

XRSE
XERR

L1 R0,56
XERR

XCLF
XERR

XEXT

;READ SECTOR
;ERROR

;RETURN EOF ERROR

;CLOSE FILE, ERROR?
;Y, DO ERROR CALL
;N, RETURN TO MONITOR

===================--=============--==~=========--···········=· =·=·====-=---=========================
PDOS 2. 4 DOCUHENT A TlON . CHAPTER 6 PDOS AssEHBL Y PRIMlTlVES PAGE 5-8

==---=-============-==--=====-==========------========================

5.2.4 XFTD - FIX TIME & DATE

Mnemonic: XFTD
Value: >2FD5

Fonnat: XFTD

Registers: OUT RO = (Holrs * 256) + Minutes
R1 = ((Year * 16) + Month) * 32 + Day

The FIX TlHE & DATE primHive returns a tHO HOrd encoded
ti.e and date generated fraa the system timers. The
resultant codes include month, day, year, hour"s, and
minutes. The ordinal codes can be sorted and used as 1nputs
to the UNPACK DATE and UNPACK TlHE routines.

(See 5.2.19 UNPACK DATE and 5.2.21 UNPACK TIME.)

Possible Errors: None

5.2.5 XGML - GET MEMORY LIMITS

Mnemonic: XGHL
Value: >2F43

Format : XGHL

Registers: OUT RO = Beginning User Storage (BUS)
R1 = End User HeiiiOI"y (EIJH)

R9 = Task control block

*Uses registers RO,R1,R9,R11 of calling HOI"kspace

The GET MEMORY LlHlTS subroutine returns the user task
memory 1 imi ts. These limits are defined as the first usable
location after the task control block (>200 beyond register
R9) and the end of the user task memory. The task .. y use
up to but not including the upper memory limit.

Register RO is returned pointing to the beginning of user
storage and register R1 to the end of user storage.

Possible Errors: None

XFTD ;GET TlHE STAHP
HQV RO,iTSTP ;SAVE TlHE
HOV R1,iTSTP+2 ;SAVE DATE

TSTP DATA D,O ; TlHE STAMP SAVE

START)(GHI.. ;GET HEHORY LIMITS
LI RO,ENDP ;GET POINTER

START2 CLR *RO+ ;CLEAR MEMORY
C RO,R1 ;DONE?

.1. START2 ;N

=========--===================================~=======~~====•-==
PODS 2.4 DOCUHENTATlON CWIPTE~ 5_ PODS ASSEMSLY PR.lHlTlVES PAGE 5-9

=======--==-======-=-===

5.2.6 XGTM- GET TASK MESSAGE

Mnemonic: XGTH
Value: >ZFCB

Format: XGTH
EQ =Message

Registers: IN (R1) = 51 character buffer
OUT RO = Source task I

The GET TASK MESSAGE prim i t i ve searches the POOS message
buffers for a message Hith a destination equal to the
current task number. lf a message is found, it is moved to
the buffer pointed to by register R1, the message buffer is
released, and the status is set EQUAL. lf no message ia
found, status is returned NE.

The buffer must to at least 51 bytes in length. Only the
first encountered message is returned. Messages are data
independent and pass any type of binary data.

LOOP

*
NONE

BUFFER

Ll R1 ,BUFFER
XGTM

JNE NONE
XPCL
XPLC
JHP LOOP

BSS 51

;GET BUFFER

;LOOK FOR MESSAGE

;MESSAGE, CRLF
; OUTPUT LINE
;LOOK AGAIN

;MESSAGE BUFFER

===--==========~===
PODS 2.4 DOCUMENTATION CHAPTER 5 POOS ASSEMBLY PIUHlTlVES PAGE 5-10
===::======-===

5.2.7 XISE- INIT SECTOR

Mnemonic: XlSE
Value: >ZFCC

Format: XISE
error

Registers: lN RO = Disk #
R1 = Logical sector #

(RZ) = Buffer address

The !NIT SECTOR primitive is a system-defined,
hardware-dependent program Hhich Hri tes 256 bytes of data
from a buffer (RZ) to a logical sector number (R1) on d1sk
(RO). This routine is meant only to be used for disk
initialization and ;s equivalent to the HRITE SECTOR
primitive for all sectors except 0. Sector 0 is not checked
for the POOS 10 code.

XlSE branches to location >FBOB of the boot EPROHs. You
may substitute other routines to handle different devices
such as high speed disks or bubble 111811ories. The call exits
Hith a !NCT R14 and RTHP for a normal return. An error
return is made by moving the error number to register RO of
the calling routine (*R13) and doing a RTHP. In either
case, the level 3 lock at location >2FEB must be cleared!

See APPENDIX _ PDOS BOOT: SR.

Poss1ble Errors:

Disk errors

Ll RO,DISKN ;GET DISK #

CLR R1 ;START AT SECTOR 0
Ll RZ, BUFFER ;GET BUFFER PTR

*
LOOP XISE ;HRITE TO DISK

XERR ;ERROR
INC R1 ; MOVE TO NEXT
CI R1,DISKZ ;DONE?

JL LOOP ;N

~lSEOO ;ROUTINE ENTRY

XISEZO INCT R14 ;NORMAL RETURN

*
X ISERT CLR iil>ZFEB ;CLEAR LEVEL 3 LOCK

RTHP ;RETURN.

*
XISERR HOV RO,*R13 ; ERROR RETURN

JHP XISERT ;RETURN

~
I

==--====·==
PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEHSLY PRlHITIVES PAGE 5-11

===·===

5 • 2 • 8 XKTB - KILL TASK BLOCK

Mnemonic: XKTB
Value: >2F50

F 01"'1118 t : XKTB
error

Registers: IN RO = Task #

*Uses registers RO-R3,R9,R11

The KILL TASK BLOCK primitive removes a task from the PDOS
task list and optionally returns the task's memory to the
system memory bit map. Only the current task or a task
spaNned by the current task can be killed. Task 0 cannot be

killed.

The task number is specified in register RO. If register
RO=O, then the current task is killed and its memory
deallocated in the system memory bit map.

If RO>O, then the selected task is killed and its memory
deallocated. If RO<O, then task number ABS(RO) is killed
but its memory is not deallocated in the memory bit map.

The ki 11 process includes releasing the input port assigned
to the task, and closing all files associated Hith the task.

Possible Errors:

74 = No such task
76 = Task locked

PREND SETO RO
XKTB

XERR

;KILL SELF
;CALL KILL TASK

If RO=O, then kill self & deallocate
memory

If RO>O, then kill task RO & deallocate
memory

If RO<O, then kill task ABS(RO) & do not
deallocate memory

====================--===========================~=~~==~~=========c~==
PDOS 2.4 OOCUHENTATlON CHAPTER 5 PDQ,t ~SSEHBL Y PIUHlTlVES PAGE 5-12
=============~~================================;~==?=~===~===--=============~==

5.2.9 XLKT- LOCK TASK

Mnemonic: XLKT
Value: >2FC9

Fonaat: XLKT

Registers: None

The LOCK TASK primitive locks a task in the run state by
setting to nonzero the SNap lock variable at tne1110ry location
>2FEA. This allONS only user interrupt routines (not tasks)
and the c:trrent task to receive CPU cycles. The task
remains locked until an UNLOCK TASK (XULT) is executed.

XLKT H&its until all locks (Level 2 and Level 3 locks) are
c 1 eared before the task is 1 ocked.

Possible Errors: None

5.2.10 XRDT - READ DATE

Mnemonic: XROT
Value: >2FD3

Format: XRDT

Registers: OUT (R1) = HN/DY/YR string

The READ DATE primitive returns the current system date as
a nine character string. The format is 'HN/DY/YR' follOHed
by a null. Register R1 points to the string in the monitor
Hark buffer.

Possible Errors: None

*
HAlT

GETD

HES1

XLKT ;LOCK TASK
SBO 20 ;START CRITICAL PROCESS

TB -5 ;OK?
JNE HAlT ;N

SBZ 20 ;Y, STOP
XULT ;UNLOCK TASK

XPHC ;OUTPUT PROMPT
DATA MES1

XRDT ;GET DATE
XPLC ; OUTPUT TO SCREEN

TEXT 'DATE='
BYTE 0

~
I

===
PDOS 2. 4 DOCUMENT A TlON CHAPTER.S,POOS ASSEMBLY PRIMITIVES PAGE 5-13
==--==

5.2.11 XRSE - READ SECTOR

Mnemonic: XRSE
Value: >2FCD

Format: XRSE
error

Registers: IN RO = Disk I
R1 = Sector I

(R2) = Suffer pointer

The READ SECTOR primitive is a system-defined,
hardHare-dependent program Hhich reads 256 bytes of data
into a memory buffer pointed to by register R2. The disk is
selected by register RO. Register R1 specifies the logical
sector number to be read.

XRSE branches to location >FSOO of the boot EPROHs. You
may substitute other routines to handle different devices
such as high speed disks or bubble memories. The call exits
Hith a lNCT R14 and RTHP for a normal return. An error
return is made by moving the error number to register RO of
the calling routine (*R13) and doing a RTHP. In either
case, the level 3 lock at location >2FE9 must be cleared!

See APPENDIX PDOS BOOT:SR.

Possible Errors:

Disk errors

BUFFER

XRSEOO

XRSEZO
*
XRSERT

*
XRSERR

CLR RO ;SELECT DISK #0
CLR R1 ;READ HEADER
Ll RZ,BUFFER ;GET BUFFER
XRSE ;READ INTO BUFFER

XERR ;ERROR

BSS 256 ;BUFFER

.... ;ROUTINE ENTRY

INCT R14 ;NORMAL RETURN

CLR a>ZFES ;CLEAR LEVEL 3 LOCK
RTHP ;RETURN

HOV RO,*R13 ;ERROR RETURN
JHP XRSERT ;RETURN

==t;;::::;;::;:;:,;;r.~=~===

POOS 2.4 OOCUHENTATlON CHAPl'Eft 5. _POOS: ASSEHBI.,Y PRlHlTlVES PAGE 5-14
:::::::::::::::::::===============================;E~~=~~=--======c=:=::::=--========~===================================

5. 2 .12 XRTM - READ TIME

Mnemonic: XRTM
Value: >2FD1

Format: XRTM

Registers: OUT (R1) = HR:HN:SC string

The READ TlHE primitive returns the current time as an nine
character string. The format is 'HR:HN:SC' folloHed by a
null. Register R1 points to the string in the monitor Hork
buffer.

Possible Errors: None

5.2.13 XRTS - READ TASK STATUS

Mnemonic: XRTS
Value: >ZFDF

Format: XRTS

Registers: lN RO = Task I
OUT R1 = Task time

L T = Suspended
EQ = No task
GT = Executing

The READ TASK STATUS primitive returns in register R1 and
the status register the time parameter of the task specified
by register RO. The time reflects the execution mode of the
task. If R1 returns zero, then the task is not in the task
list. If R1 returns a value greater than zero, then the
task is in the run state (executing). If R1 returns a
negative value, then the task is suspended pending event
-(R1).

The task number is returned from the CREATE TASK BLOCK
(XCTB) primitive.

Possible Errors: None

GETD XPMC ;OUTPUT PROMPT
DATA MES1

XRTM ;GET TIME
XPLC ;OUTPUT TO SCREEN

HES1 TEXT 'TIME='
BYTE 0

SETO RO ;USE CURRENT PAGE
Ll R1,FILEN ;GET FILE NAME
Ll R2,1 ; 1 TIME PERIOD
CLR R3 ;USE PHANTOM PORT
HOV ~>1DC(9),R4 ;GET EUH
MOV R4,R5 ;SET END
AI R4,->0400 ;SET BEGINNING (1K)
XCTB ;CREATE TASK

JMP ERROR ;PROBLEM

*
LOOP XSHP ;SHAP HHILE HAlTING

XRTS ;FOR TASK TO COMPLETE
JNE LOOP

NEG RO ;KILL TASK H/0 FREEING
XKTB ;MEMORY

JHP ERROR

lf R1=0, then not in task list

If R1>0, then task executing

lf R1<0, then task suspended on event -R1
-~.

===
PODS 2.4 OOCUHENTATION CHAPTER 5 PDDS ASSEMBLY PRIMITIVES PAGE 5-15

===

5.2.14 XSEF - SET EVENT FLAG

Mnemonic: XSEF
Value: >2FC6

Format: XSEF

Registers: IN R1 = Event

The SET EVENT FLAG primitive sets Dr resets an event flag
bit. The event number is specified in register R1 and is
modulo 128. If the content of register R1 is positive, the
event bit is set to 1. OtherHise, the bit is reset to 0. A
hardHare event can be simulated by the XSEF primitive Hhen
an event number of 1 through 16 is used.

Events are summarized as follOHs:

1-15 = HardHare events
16-63 = SoftHare events
64-94 = SoftH&re resetting events

95-103 = Input port events
104-111 = Output complete events

112 = 1/5 second event
113 = 1 second event
114 = 10 second event
115 = 20 second event
116 = $TTA active
117 = $LPT active

118-126 = To be assigned
126 = Error message disable
127 = System utility

Possible Errors: None

LI R1,30
XSEF

Ll R1,-35
XSEF

4 types of event flags:

;SET EVENT 30
;SET EVENT

;RESET EVENT 35
;SET EVENT

1-15 = HardHare
16-63 = SoftHare
64-g4 = SoftHare resetting

95-127 = System

===~~~~~=~====~=============--==
PDOS 2. 4 OOCUHENTA TlON CHAPTER 6,flQO~ 4S~LY ,I'WflTlVES PAGE 5-16

======================================~==========~~=~~-~~~==~~~-=======~=====~=======================================

5. 2 • 15 XSTM - SEND TASK MESSAGE

Mnemonic: XSTM
Value: >2FDE

Format: XSTH
error

Registers: lN RO = Task #
(R1) = Message string

The SEND TASK MESSAGE primitive places a 50 character
message into the PDOS system ~~~essage buffer. The message is
data independent and is pointed to by register R1.

Register RO specifies the destination of the message. lf
register RO equals -1, and there is no input port (phantom
port), then the message is sent to the parent task.
OtherHise, register RO specifies the destination task.

The ability to direct a message to a parent task is very
useful in background tasking. An assembler need not knoH
from Hhich task it H&S sp&Hned and can merely direct any
diagnostics to the parent task.

lf the destination task number equals -1, the task message
is moved to the monitor input buffer and parsed as a command
line. This feature is used by the CREATE TASK BLOCK
primitive to spaHn a neH task.

Possible Errors:

78 = Message buffer full

ERROR Ll R1,ERRH
SETO RO
XSTH

XERR
XEXT

;ERROR, RETURN MESSAGE
; TO PARENT TASK
;SEND MESSAGE
;PROBLEM
;DONE

RO = -1 sends message to parent task

- ···~ : ':~· .
==~=,=· .. ·····=====---==
POOS 2.4 DOCUMENTATION C~APTER ~5 :POO~)SSI!'HILY PIWttTIVES PAGE 5-17

=========--==-==·to=-===::==

5 • 2 .16 XSUI - SUSPEND UNTIL INTERRUPT

Hneaonic: XSUI
Value: >2FC7

Format: XSUI

Registers: IN R1 = Event

The SUSPEND UNTIL INTERRUPT primitive suspends the user
task unt11 the event specified in register R1 occurs. There
are 127 events defined in PODS. The first 15 (1-15) are
hardNare events Hhile events 16 through 127 are softHare
events. (Event 0 is ignored.) The event number in register
R1 is modulo 128.

A suspended tuk does not receive any CPU cycles unti 1 the
event ocars. Hhen the event bit is set, the task begins
executing at the next instruction after the XSUI call. The
task is i..ediately scheduled and begins executing for
hardHare event interrupts. All others are scheduled ckring
the nor'Ml SNapping functions of PODS.

A suspended task is indicated in the LIST TASK (L T) c01111118nd
by a •inus event number being listed for the task time
par~~~~eter. Hhen the event occurs, the original time
par81118ter is restored.

HardHare events are enabled by ovenriting the appropriate
interrupt vector Hith the Horkspece and address of the event
processor. The interrupt 118sk bit on the 9901 is set to
one, enabling the interrupt. HoHever, you IIUSt ensure thet
the system interrupt mask is high enough to allDH the
interrupt to occur. SoftHare events are indicated by a
single bit being set or reset in an event 1 ist.

If IIIOf'e then one task is suspended on the S8lii8 event, only
the lOHeSt numbered task is rescheduled for all hardHare
events. For softHare events, hoHever, all tasks suspended
on the event are rescheduled until the event is reset.

Once a hardHare interrupt occurs, PODS disables further
interrupts on the event level at the system THS9901 by
setting the interrupt usk bit to zero. The syst•
interrupt ll8sk is not affected. SoftH&re event flags are
not reset and 111.1st be processed by the event routine.

Possible Errors: None

.LT

LI R1,5
XSUI
Ll R12,>0180
sao 1s

TASK PAGE TIHE TB

; SUSPEND ON LEVEL 5
; SUSPEND TASK
; POINT TO AUX PORT
; ACKNDHLEDGE INTERRUPT

HS PC SR •••

*0/0 0
1/0 0
2/0 0

3 >42A2 >441C >0654 >D40F ...
-30 >4AA2 >4A82 >1040 >DOOF ••.
-5 >52A2 >5282 >292E >C40F ...

NeH interrupt vector
Interrupt enabled at THS9901

Interrupt disabled at THS9901

SoftHBre event flag bit NDT reset

============--==============----==================~~~==~===

PODS 2.4 DOCUMENTATION PAGE 6-18

===~~~~~-==....-.--~===

5. 2 .l. 7 XSWP - SWAP TO NEXT TASK

Mnemonic: XSHP

Value: >2FCO

Fermat: XSHP

The SHAP TO NEXT TASK primitive relinquishes control to the

next task in .the system task list. This should be used by
any routine Haiting on I/O or other counters.

Possible Errors: None

5.2.1.8 XTEF - TEST EVENT FLAG

Hnemoni c: XTEF
Value: >2FC8

Fermat: XTEF

Registers: IN R1 = Event

The TEST EVENT FLAG primitive sets the 9900 status HOrd
EQUAL or NOT-EQUAL depending upon the zero or nonzero state
of the specHied event flag. The flag is not altered by

this primitive.

The event number is specHied in register R1 and is modulo

128. The XTEF primitive is meaningful fer softHare events
only (16-127).

Possible Errors: None

LOOP TB 6

•
LOOPOZ

JEQ LOOP02

XSHP

JHP LOOP

L1 R1,30
XTEF

JEQ EVENT

;CONDITION MET?

;Y
;N, SHAP HHlLE HAlTING

;EVENT 30
;TEST EVENT FLAG

;EVENT= .TRUE.

;EVENT = .FALSE.

.~
\

==·===;====
PDOS 2.4 DOCUMENTATION CHAPTER 6 POD!{ ASSEHBLV PRlMlTlVES PAGE 5-19
===~==============~==

5.2.19 XUDT - UNPACK DATE

Mnemonic: XUDT
Value: >ZFOA

Format: XUDT

Registers: lN R1 = (Year * 16 + Month) * 32 + Day

OUT (R1) = HN/DY/YR

The UNPACK DATE primitive converts a one NOrd encoded date
into an eight character string terminated by a null (9
characters). Register R1 contains the encoded date and
returns Hith a pointer to the formatted string. The output
of the FIX TlHE & DATE routine is valid input to this
routine.

(See 6.2.4 FIX TIME & DATE.)

Possible Errors: None

5.2.20 XULT - UNLOCK TASK

Mnemonic: XULT
Value: >2FCA

Format: XULT

The UNLOCK TASK primitive unlocks a locked task by clearing
the SHap lock variable at memory location >2FEA. This
allOHs other tasks to be scheduled and receive CPU time.

(5ee 6.2.9 XLKT - LOCK TASK.)

Possible Errors: None

LOOP

XFTD
XUDT
XPLC

TB 5
JNE LOOP

SBZ 10
XULT

;FIX TIME & DATE
;UNPACK DATE
;PRINT 'HN/DY/YR'

;CONDITION MET?
;N, HAlT
;Y, RESET
;UNLOCK TASK NOH

==~#=~===
PDOS 2.4 DOCUMENTATION CHAPTER 6 PDOS ASSSIBl.Y fiJUMlllVES PAGE 5"-20

==·~==

5.2.21 XUTM - UNPACK TIME

Hnemoni c: XUTH
Value: >2FD8

Format: XUTM

Registers: lN R1 = (Hours * 266) + Minutes

OUT (R1) = HR:HN

The UNPACK TlHE primitive converts a one Hard encoded date
into a 6 character string terminated by a null. Register R1
contains the encoded time end returns Hith a pointer to the
forlll&tted string. The output of the FIX TIME a DATE routine
is valid input to this routine.

(See 6.2.4 FIX T!HE a DATE.)

Possible Errors: None

5. 2, 22 XWDT - WRITE DATE

Mnemonic: XHDT
Value: >2FD4

Format: XHDT

Registers: IN RO = Month
R1 = Day
R2 = Year

The HRITE DATE primitive sets the system date counters.
Register RO specifies the month and ranges from 1 to 12.
Register R1 specifies the day of month and ranges from 1 to
31. Register R2 is the last 2 digits of the yeer.

Possible Errors: None

XFTD
HOV RO,R1
XUTH
XPLC

L! RO, 12
L! R1,26
L! R2,80
XHDT

; GET SYSTEM TlHE

;CONVERT TO STRING
;PRINT TlHE

;SET DATE TO 12/25/80

;SET DATE

===~=.~ --~~~=====':"'-======-==:::::.:::::=
POOS 2. 4 DOCUMENT A TlON CHAPTER 5 PODS ASSEHQLY PRlHlTlVES PAGE 5-21

=======--====================================~========~~==---~=--===

r
\ 5.2.23 XWSE - WRITE SECTOR

Hnemoni c: XHSE
Value: >2FCE

Format: XHSE
error

Registers: lN RO = Disk #
R1 = Sector I

(R2) = Buffer address

The HR!TE SECTOR primitive is a system-defined,
hardHare-dependent progr811 HM ch Hri tes 256 bytes of data
from a buffer, pointed to by register R2, to a logical
sector and disk device as specified by registers R1 and RD
respectively.

XHSE branches to location >FB04 of the boot EPROMs. You
may substitute other routines to handle different devices
such as high speed disks or bubble memories. The call exits
Hith a lNCT R14 and RTHP for a normal return. An error
return is made by passing the error number to register RO of
the calling routine Horkspace (*R13) and doing a RTHP. In

~ either case, the level 3 lock at location >2FE8 must be
cleared upon exit!

See APPENDIX POOS BOOT: SR.

Possible Errors:

Disk errors

BUFFER

XHSEOO

XHSE20
*
XHSERT

*
XHSERR

CLR RO ;HRITE TO DlSK ItO

L1 R1,10 ;HRlTE TO SECTOR #10
Ll RZ,BUFFER ;GET BUFFER ADDRESS
XHSE ;HRlTE

XERR ;PROBLEM

BSS 256 ;DATA BUFFER

.... ;HRlTE SECTOR ENTRY

lNCT R14 ;NORMAL RETURN

CLR ~>ZFEB ;CLEAR LEVEL 3 LOCK
RTHP ;RETURN

HOV RO,*R13 ;ERROR
JHP XHSERT ;RETURN

==~-=--====-=-========================--==
PDOS 2.4 DOCUMENTATION CHAPTER S PDOS ASS£HBL V AAlH.tTlVES PAGE 5-22
==--=====-===

5. 2. 24 XWTM - WRITE TIME

Mnemonic: XHTH
Value: >2FD2

Format: XHTH

Registers: lN RO = Hours
R1 = Minutes
R2 =Seconds

The HRlTE TIME primitive sets the system clock time.
Register RO specifies the hour and ranges from 0 to 23.
Register R1 specifies the minutes and register R2, the
seconds. Both range from 0 to 59.

Possible Errors: None

LI R0,23
LI R1,59
LI R2,59
XHTH

;SET T!HE TO 23:59:59

;SET SYSTEM TlHE

==~===
PDOS 2. 4 DOCUMENT A TlON CHAPTER 5 PODS ASSEH8L Y PRlMlTIVES PAGE 5-23
•===~===================~===·==============

5.3 CONSOLE I/0 PRIMITIVES

5.3.1 XBCP - BAUD CONSOLE PORT

Mnemonic: XBCP
Value: >2F49

Format: XBCP
NE =error

Registers: lN R1 = CRU base
R6 = Console Port I
R6 = Baud rate

*Uses registers RO,R1,R5,R6,Rg,R11,R12

The BAUD CONSOLE PORT subroutine initializes any one of the
eight PDOS 1/0 ports and binds a physical THS9902 UART to a
character buffer. The subroutine sets the 9902 charac:ter
format, receiver and transmitter baud rates, and anebltts
receiver interrupts.

Register R6 selects the console port and ranges from 1 to
e. The system variable ITBCRU, located at address >0096
(>0096 for 102), points to the input CRU base table. This
table binds a physical 9902 UART to a port character buffer
and is generated burning PODS initialization. Entries in
this table are changed by the BFIX utility or by a nonzero
register R1.

The THS9902 UART's control register is initiali%1d to 1
start bit, 7 bit character, even parity, and 2 stop bits (11
bits). The receiver and transmitter baud rates are
initialized to the same value according to register R6.
Register R6 ranges from 0 to 7 or the corresponding baud
rates of 19200, 9600, 4800, 2400, 1200, 600, 300, or 110.
Either parameter is acceptable.

lf R6 is negative, then the associated CR1J base addreSS is
stored in the UNlT 2 (U2C(9)) variable. The port is bound
to any CRU base in register R1.

Interrupts are enabled for input only (SBD 18).

Possible Errors:

64 = Invalid port or baud rate

START Ll R1,>320
Ll R6,3
Ll R6,19200
XBCP

R5 ;; Port = 1 = >OOBD
2 = >0180
3 o:: >OEOO
4 :; >OAOO
5 :; >OA40
6 = >OABO
7 = >OACO
e ;:: >OBOO

R6 = Baud = 0 = 19200 baud
1 = 9600 baud
2 = 4800 baud
3 = 2400 baud
4 = 1200 baud
5 = 600 baud
6 = 300 baud
7 = 110 baud

;'ASSIGN CRU BASE
; TO PORT 3
; 141TH 19.2K BAUD
;BAUD PORT

TM9900/101HA ma;n port
TH9S00/101HA aux port
ER3232 sel 11 page #0
ER3232 se 1 13 page to
~R3232 sel 13 page #1
ER3Z32 se 1 ft3 page 12
ER3232 se 1 13 page 13
ER323Z se 1 #3 page t4

9902 initialized for 11 bits:
1 start b;t
7 b;t character
1 even par;ty
2 stop bits

===================--==:a::==
PODS 2.4 DOCUHENTATlON CHAP.TER §.,,.POOS .. ASSatBL Y. PIUH.lTlVES PAGE 5-24

====================--=======================~~;r7~~~=~r~~~~r=~~~~==

5.3.2 XCBC - CHECK FOR BREAK CHARACTER

Format:

XCBC
>2F64

XCBC
JL Ac

JLT esc
JEQ nothing

The OtECK .FOR BREAI(CH~CTER primitive check~ the current
user input port break flag to see if a .break character has
been enteted. Thct PDOS break characters are control C (>03)
and the escape key (>18). .;.

A control C sets the break flag positive, Hhile an <escape>
character sets the flag negative. The XCBC COIIIIIIand samples

and clears this flag. The condition of the break .flag is
returned in the'stati.Js register.

_., .. -·

A LOJil cimditlOn ·indicates a AC has been entered. The break
flagi".and the :·1nput. bUffer are cleared. All subsequent .,
character$ entered lifter; the A(and before the XCBC call are
dropped/

A LESS THAN condition indicates an <escape> character has

been entered. Only the break flag is cleared and,not the
input buffer. Thus, the <eseape> character remains in the

buffer.

The AC chlit'*:ter is interpreted as a hard break and is used

to terminate command operatioas. The <escape> character is
a soft break and remains in the input buffer, even though

the break flag is cleared by the XCBC command. (This alloHs.
an editor to use the escape key for spec;al funct;ons or
command term;nat;on.}

Possible Errors: None

*
CONTC

*
ESCAP

*
BR!(H

~-~

' . ~ .

XCBC ;BREAK?
JL CONTC ;Y, Ac

JLT ESCAP ;Y, ESC
JHP LOOP ;N, CONTINUE

Ll RO, 'AC' ;CONTROL C, ECHO 'AC'

XPCC ;OUTPUT

JHP BEGIN ;START AGAIN

Ll R1,BRKH ;OUTPUT '>>BREAK'
XPHC ;OUTPUT

XEXT ; EXIT TO PDOS

BYTE >OA, >00 ;BREAK MESSAGE

; TEXr ' »BREA~'
BYTEO

"""" I

~'

~
\

===:::_:::,==?~.;==~===

PODS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASS6MBL.Y PRlHlUVES PAGE 5-25
===2=============~=================~===========================

~.3.3 XCLS - CLEAR SCREEN

Mnemonic: XCLS
Value: >ZFSC

Format: XCLS

The CLEAR SCREEN primitive clears the console screen, homes
the cursor, and clears the column counter. This function is
adapted to the type of console terminals used in ,the PODS
system.

The character sequence to clear the screen is located in
the task control block at ~>1EA(9). The clear screen
variable 1s initialized from memory location >0090 Hhen the
task is created. It is altered after the task is executing
by the TERMINAL utility.

The CLEAR SCREEN primitive outputs up to four characters:
one or tHO characters, an escape fo110Hed by a character, or
an escape, character, escape, and a final character. The
one Hord format a11oHs for tHo characters. The parity bits
cause the escape character to precede each character.

The BFlX utility configures location >0090 for the default
codes.

XCLS
XPMC

;CLEAR SCREEN
; OUTPUT MESSAGE

DATA HES01

CSC(9) = £111 1111 £222 2222

\\ \ \\ '--
\\ \ \\ 2nd character
\\ \ \ 2nd escape
\\ \

\\ '----\\ ______ 1st character
\ 1st escape

===
PDOS 2.4 DOCUMENTATION CHAPTER 6 PDOS ASSEMBLY PRIMITIVES PAGE 5-26

==~=====~=======~==

5.3.4 XGCC - GET CONSOLE CHARACTER CONDITIONAL

Mnemonic: XGCC
Value: >2F66

Format: XGCC
EQ => No character
L => "C

LT => Esc

Registers: OUT RO = Character*266

The GET CONSOLE CHARACTER CONDITIONAL primitive checks the
interrupt driven input character buffer and returns the next
character in the left byte of register RO. The right byte
is cleared.

lf the buffer is empty, the EQUAL status bit is set. lf
the character is a control C (>03), then the break flag and
input buffer are cleared, and the status is returned LOH.
If the character is the escape character (>18), then the
break flag is cleared and the status is returned LESS THAN.

lf no special character is encountered, the character is
returned in register RO and the st~tus set HIGH and GREATER
THAN.

lf no port has been assigned for input (ie. port 0 or
phantom port), then the routine alHays returns an EQUAL
status.

Possible Errors: None

HAlT

XGCC
JEQ CONT
JL QUIT
JLT NEXT

XGCR
JHP CONT

;CHARACTER?
;N, CONTINUE
;Y, "C, QUIT
;Y, ESC, GOTO NEXT

;Y, HAlT CHARACTER

=--===
PDOS 2.4 DOCUHENTATlON CHAPTER 5 PODS ASSEMBLY PRlH!TlVES PAGE 5-27
==~===:;:::=

5,3,5 XGCR - GET CONSOLE CHARACTER

Mnemonic: XGCR
Value: >2F56

Format: XGCR
L => "C

LT => Esc

Registers: OUT RO = Character*256

The GET CONSOLE CHARACTER primitive checks for a character
from first, the input message pointer (~>18A(9)), second,
the assigned input file (~>1E0(9)), and then finally, the
interrupt driven input character buffer. If a character is
ready, it is returned in the left byte of RO and the right
byte is cleared.

If there is no input message, no assigned console port
character, and the interrupt buffer is empty, the task is
suspended pending a character interrupt.

The status is returned LOH and the break flag cleared if
the returned character is a control C (>03). The input
buffer is also cleared. Thus, all characters entered after
the "C and before the XGCR call are dropped.

The status is returned LESS THAN and the break flag cleared
if the returned character is the <escape> character (>18).

For all other characters, the status is returned HIGH and
GREATER THAN. The break flag is not affected.

lf no port has been assigned for input, (ie. port 0 or
phantom port), then the task is suspended indefinitely on
event 95.

Possible Errors: None

LOOP)(GCR
JL QUIT
JLT NEXT

;GET CHARACTER
;"C, DONE
;CONTINUE

Cl RO I • 0. *256 ; NUHBER?

==-=-~=----~~~==--=======-=====--==

PDOS 2.4 DOCUMENTATION CHAP~ ~,PDQ$ ASSEMBLY PRlHITIVES PAGE 5-28 -. ::.· ,,

. ·======================~~~~========-~~.=====:~=,~;.==~.:-~?7=~==~~=.====-===

5.3.6 XGLB - GET LINE IN BUFFER

Mnemonic:
Value:

Format:

XGLB
>2F4A

XGLB
JL T XXXX { bpt 1 ona 1 }

Registers: \'.!N (R2) = BuffF ·
~ :~ 1 .

OUT (R1) = Input string'
(R9) = Task control block

EQ = Carriage return only
l = Control C

*Uses registers RO-R3,R11 of calling Horkspace

The GET LINE IN BUFFER subroutine gets a character line
into a buffer pointed to by register R2. A XGCR primitive
is used by XGLB and hence characters come frOID a memory
message, a file, or the task console port. The line is
delimited by· a <CR>. The status returns EQUAL if only a
<CR> is entered. Register R1 is returned Hith a pointer to
the first character.

The buffer need only be 80 characters in length since XGLB

limits the number of characters to 78. All control
characters except <rubout>, <escape>, "C, and <CR> are
ignored.

If an <escape> is entered, the task exits to the PODS
monitor unless a 'JLT' instruction immediately follOHs the
XGLS call. lf such is the case, then XGLS returns Hith
status set at 'LT'.

~ ' ...

j{.

Possible Errors: None

==:;======================================:====================================
PDOS 2.4 OOCUHENTATlON CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-29

~ ===
\

~
\

5.3.7 XGLM- GET LINE IN MONITOR BUFFER

Mnemonic:
Value:

Format:

XGLH
>2F4B

XGLH
JLT XXXX {optional}

Registers: OUT (R1) = Input string
(R9) = Task control block

EQ = Carriage return only
L = Control C

*Uses registers RO-R3,R11 of calling Horkspace

The GET LINE lN HONlTOR BUFFER subroutine gets a character
line into the monitor buffer. A XGCR primitive is used by
XGLH and hence characters come from a memory message, a
file, or the task console port. The line is delimited by a
<CR>. The status returns EQUAL if only a <CR> is entered.
Register R1 is returned Hith a pointer to the first
character.

The monitor buffer is located 256 bytes into the task
control block and is BO characters in length.

lf an <escape> is entered, the task exits to the PDOS
monitor unless a 'JLT' instruction immediately folloHs the
XGLB call. lf such is the case, then XGLB returns Hith
status set at 'LT'.

Possible Errors: None

KGI..H
XSOP

XEXT

;GET LINE
;OPEN FILE
;ERROR

===-==================--====================================
PDOS 2.4 DOCUHENTATlON CHAPTER 6 PDOS ASSEMBLY PRlHlTlVES PAGE 5-30

=========~==================--=================~*========--===

5.3.8 XGLU- GET LINE IN USER BUFFER

Mnemonic: XGLU
Value: >2F4C

Format: XGLU
Jl. T XXXX { opti ona 1 }

Regl.sters: OUT (R1) = lnput :string
(R9Y = Task eontrol block

EQ = Carriage return only
L = Control C

*Uses registers RO-R3,R11 of calling Horkspace

The GET LlNE lN USER BUFFER subroutine gets a character
line into the user buffer. Register R9 points to the user
buffer. A XGCR primitive is used by XGLU and hence
characters come from a memory message, a file, or the task
console port. The line is delimited by a <CR>. The status
returns EQUAL if only a <CR> is entered. Register R1 is
returned Hith a pointer to the first character.

The user buffer is located at the beginning of the task
control block and is 256 characters in length. HoHever, the
XGLU routine limits the number of input characters to 78
plus tHO nulls.

lf an <escape> is entered, the task exits to the PDOS
monitor unless a 'JLT' instruction immediately folloHs the
XGLB call. lf such is the case, then XGLB returns Hith
status set at 'LT'.

Possible Errors: None

GETN Ll R4,DNUH
XGLU

JEQ GETN2
xcso

JLE ERROR
HOV R1,R4

*
GETN2 HOV R4,SAVE

;GET DEFAULT #

;GET LlNE
;USE DEFAULT
;CONVERT #

;SAVE #

===~=·===
PDOS 2.4 DOCUMENTATION CHAPTER 5 PODS ASSEMBLY PRlHlTlVES PAGE 5-31
===-===

5 • 3 • 9 XIPL - INTERRUPT DRIVER PUT LINE

Mnemonic: XIPL
Value: >2F5E

Format: XIPL

Registers: IN RO = Port #

(R1) = String

The INTERRUPT DRIVER PUT LINE primitive outputs a line to a
console port using the transmitter interrupt features of the
TMS9902 UART. Register RO specifies the port number. No
check is made as to its range. Register R1 points to the
string to be output.

The routine first checks the port output variable and Haits
until zero. Then, the first character is output, the output
variable set, and transmitter empty interrupt enabled. It
is the responsibility of the calling program to monitor
completion if the line buffer is to be used again. This is
done by suspending on the corresponding output event.

~ The interrupt processor outputs characters until a null
character is encountered. Hhen. complete, the output
variable is cleared and the corresponding output event set.

Possible Errors: None

HOV iilPRT(9),RD
HOV RD,R2
Al R2, 103
MDV R2,R1
NEG R1
XSEF
Ll R1,HES01
XIPL
MOV R2,R1
XSUI

;GET CURRENT PORT #

;GET CORRESPONDING
; OUTPUT EVENT II
;NEGATE TO RESET
;RESET EVENT
;GET MESSAGE POINTER
;OUTPUT LINE

;SUSPEND UNTIL DONE

============--===================================~-======================-=====--===
POOS 2.4 DOCUHENTATlON CHAPTER 6 PDOS ASSEMBLY PIUH!TlVES PAGE 5-32

==~~=~===

5. 3 .10 XPBC - PU'l' USER BUFFER TO CONSOLE

Mnemonic: XPBC
Value: >2F57

Format: XPBC

Registers: None

The PUT USER BUFFER TO CONSOLE primitive outputs to the
user console and/or SPOOL file the ASCII contents of the
user buffer. The output string is delimited by the null
character. The user buffer is the first 256 bytes of the
task control block.

Each character is masked to 7 bits as it is processed.
Hith the exception of control characters and characters Hith
the parity bit on, each character increments the column
counter by one. A backspace (>OB) decrements the counter
Hhile a carriage return (>00) clears the counter. Tabs
(>09) are expanded Hith blanks to HOD 8 character zone
fields.

The output routine first sets RTS (SBO 16) and then checks
OSR (TB 27) and BUSY (TB 22). lf either one is nonzero,
PDOS sHaps to the next task and Haits for both to clear.
After the character is output, RTS is reset (SBZ 16).

If UNIT and SPOOL UNIT have coinciding bits, then the
processed characters are Hritten to the file slot specified
by SPUN (a>1E2(9)). The characters are not sent to the
corresponding output ports. If a disk error occurs in the
spool file, then all subsequent output characters echo as a
bell untjl the error is corrected by selecting a different
UNIT or resetting the SPOOL UNIT.

Possible Errors: None

CLINE

*
CLlNE2

HOV R9,R2 ;GET USER BUFFER PTR

HOVB RO, *R2+ ;LOAD BUFFER, DONE?
JNE CL1NE2 ;N

XPBC ;Y, OUTPUT BUFFER
JHP CLINE ;CONTINUE

===~===
PODS 2.4 DOCUMENTATION CHAPTER 5 PODS ASSEMBLY PRlHITlVES PAGE 5-33
===

5.3.11 XPCC - PUT CHARACTER TO CONSOLE

Mnemonic:
Value:

XPCC
>2F58

Format: XPCC

Registers: IN RO = Character

The PUT CHARACTER TO CONSOLE primitive outputs to the user
console and/or SPOOL file the ASCII characters in register
RO. If only one character is to be output, it is placed in
the left byte Hith the right byte zero. If the right byte
is nonzero, it is sent follOHing the left byte.

Each character is masked to 7 bits as it is processed.
Hith the exception of control characters and characters Hith
the parity bit on, each character increments the column
counter by one. A backspace (>08) decrements the counter
Hhile a carriage return (>00) clears the counter. Tabs
(>09) are expanded Hith blanks to HOD 8 character zone
fields.

~ The output routine first sets RTS (S80 16) and then checks
OSR (TB 27) and BUSY (TB 22). If either one is nonzero,
PODS sHaps to the next task end Haits for both to clear.
After the character 1s output, RTS is reset (SBZ 16).

If UNIT and SPOOL UNIT have coinciding bits, then the
processed characters are Hritten to the file slot specified
by SPUN (~>1E2(9)). The characters are not sent to the
corresponding output ports. If a disk error occurs in the
spool file, then all subsequent output characters echo as a
bell until the error is corrected by selecting a different
UNIT or resetting the SPOOL UNIT.

Possible Errors: None

Ll RO, ... C.

XPCC
LI RO,>OAOO
XPCC

;OUTPUT ... C.

;FOLLOHED BY LF

==-~=====--==
PDOS 2.4 DOCUMENTATION OfAPTER 5 PODS ASSEMBLY PIUHlTlVES PAGE 5-34

=~==================================:==..=.~;;=======~==--==

5. 3 .1.2 XPCL - PUT CRLF TO CONSOLE

Mnemonic: XPCL
Value: >2F59

Format: XPCL

Registers: None

The PUT CRLF TO CONSOLE primitive outputs to the user
console and/or SPOOL file the ASCll characters <LF> and
<CR>. The column counter is cleared.

The output routine first sets RTS (SBO 16) and then checks
OSR (TB 27) and BUSY (TB 22). If either one is nonzero,
PODS SHaps to the next task and Haits for both to clear.
After the character is output, RTS is reset (SBZ 16).

If UNlT and SPOOL UNIT have coinciding bits, then the
processed characters are Hritten to the file slot specified
by SPUN (il> 1E2 (9)). The characters are not sent to the
corresponding output ports. If a disk error occurs in the
spoo 1 f i 1 e, then a 11 subsequent output characters echo as a
bell until the error is corrected by selecting a different
UNIT or resetting the SPOOL UNIT.

Possible Errors: None

XPCL ;OUTPUT CRLF

~I

===-=====-=======================================
PODS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PR1M1T1VES PAGE 5-35
===-===

5 , 3 • J.3 XPLC - PUT LINE TO CONSOLE

Mnemonic: XPLC
Value: >2F5A

Format: XPLC

Registers: IN (R1) = ASCII string

The PUT LINE TO CONSOLE primitive outputs to the user
console and/or SPOOL file the ASCII character string pointed
to by R1. The string is delimited by the null character.

Each character is masked to 7 bits as it is processed.
Hith the exception of control characters and characters Hith
the parity bit on, each character increments the column
counter by one. A backspace (>08) decrements the counter
Hhile a carriage return (>00) clears the counter. Tabs
(>09) are expanded Hith blanks to HOD 8 character zone
fields.

The output routine first sets RTS (SBO 16) and then checks
DSR (TB 27) and BUSY (TB 22). If either one is nonzero,
PODS sHaps to the next task and Haits for both to clear.
After the character is output, RTS is reset (SBZ 16).

If UNIT and SPOOL UNIT have coinciding bits, then the
processed characters are Hritten to the file slot specified
by SPUN (i>1E2(9)). The characters are not sent to the
corresponding output ports. If a disk error occurs in the
spool file, then all subsequent output characters echo as a
bell until the error is corrected by selecting a different
UNIT or resetting the SPOOL UNIT.

Possible Errors: None

NUMB
HES1

U R1,HES1 ; OUTPUT MESSAGE
XPLC
U R1,NUHB ;GET NUMBER
)(C8D ; CONVERT TO DECIMAL
KPLC ;OUTPUT

DATA 0 ; NUMBER HOLDER
BYTE >OA, >00 ;MESSAGE #1
TEXT 'ANSHER= '
BYTE 0

===~-==-===
PDOS 2.4 DOCUHENTATION GHAPI~ ,_fi JlDOS ASSEMBLY PRlHlTlVES PAGE 5-36
~====~==========~=======================·=~~~~,1,~~~~=?~==

5, 3, ~4 XPMC - PUT MESSAGE TO CONSOLE

Hnemoni c: XPMC
Value: >2F5B

Format: XPMC
. ··,' _.; DATA message

Registers: None

The PUT ,MESSAGE TO , CONSOLE command_ OIJtputs to the user
console and/or SPOOLiile the ASCll char~ter string pointed
to by the Hord immediately folloHing the PODS call. The
output string is delimited by the null 'character.

. '} ' _.,.... .; (; ,,;!!!
Each character i~S mu.ked to 7 bits $.!$.. it ri-SJI'1 processed.
Hith the exception of .control char..licter~· ,and characters Hith
the parity bit on, each character i~~ments the column
counter by one. A backspace (>08) decrements the counter
Hhile a carriage return (>00) clears the counter. Tabs
(>09) are expanded Hith blanks to HOD a character zone
fields.

The output routine first sets RTS (SBO 16) and then checks
DSR (TB 27) and BUSY (TB 22). If either one is nonzero,
PDOS SHaps to the next task and Haits for both to clear.
After the character is output, RTS is reset (SBZ 16).

lf UNlT and SPOOL UNlT have coinciding bits, then the
processed characters are Hritten to the file slot specified
by SPUN (a>1E2(9}). The characters are not sent to the
corresponding output ports. lf a disk error occurs in the
spool file, then all subsequent output characters echo as a
bell until the error is corrected by selecting a different
UNIT or resetting the SPOOL UNIT.

Possible Errors: None

XPMC ;OUTPUT HEADER
DATA HES2

MESZ BYTE >OA,>OD ;MESSAGE #2
TEXT 'PDOS REV 2.4'
BYTE 0

===
PODS 2.4 DOCUMENTATION CHAPTER 5 PODS ASS86..Y PRIMITIVES PAGE 5-37

===-=-============--=== - --

5.3.15 XPSC - POSITION CURSOR

Mnemonic: XPSC
Value: >ZF50

Format: XPSC

Registers: IN R1 = x position (ROH)
R2 = y position (Column)

The POSITION CURSOR primitive positions the cursor on the
console terminal according to the rOH and column values in
registers R1 and R2. Register R1 specifies the rOH on the
terminal and generally ranges from 0 to 23, Hith 0 being the
top rOH. Register R2 specifies the column of the terminal
and ranges from 0 to 79, Hith 0 being the left-hand column.
Register R2 is also loaded into the colUIIIn counter
reflecting the true column of the cursor.

The XPSC primitive outputs either one or tHO leading
characters follOHed by the rOH and column. The leading
characters output by XPSC are located in PSC (ii>1EC(9)) in
the task centro 1 b 1 ock. Hhen a task is created. PODS 1 oads
these characters Hith defaults Hhich come from absolute
locations >0092 and >0093.

The rOH and column characters are biased by >20 is the
parity bit of the 1st character is set. LikeHise, if the
2nd parity bit is set, then rOH/column order is reversed.
This accommodates must terminal requirements for positioning
the cursor.

The BFIX utility is used to change the position cursor
codes. The TERMINAL ut il ity changes the codes Hh il e the
task is executing.

Possible Errors: None

Ll R1,23
CLR R2
XPSC
XPHC

DATA HES1

;POSITION TO BOTTOM

; OF SCREEN

;POSITION
;OUTPUT MESSAGE

====================:==--===
PODS 2. 4 DOCUHENTATION CHAPTER 5 PODS ASSEMBLY PRIH!TlVES PAGE 5-38

==============--=--==

5.3.16 XTAB - TAB

Mnemonic:
Value:

Format:

XTAB
>2F4F

XTAB
DATA column #

Reghtters: OUT R9 = Task control block

*Uses registers R9,R11 of calling Horkspace

The TAB subroutine positions the cursor to the column
specified by the number follOHing the call. Spaces are
output unti 1 the column counter is greater than or equal to
the parameter.

The first print column is 0.

Pass i b 1 e Errors: None

XPHC
DATA HES1

XTAB
DATA 30

;OUTPUT HEADER

; HOVE TO COLUMN 30

========--===========================--=============•===~===-=====-=•===
PDOS 2.4 DOCUHENTATlON CHAPTER I PODS ASSEMBLY PRlMlTlVES PAGE 5-39
============--========================--===========================·===

5.4 FILE PRXMITIVES

5.4.1 XAPF - APPEND FILE

Hnemonic: XAPF
Value: >2F40

Format: XAPF
en-or

Registers: IN (R1) = Source file name
(RZ) =Destination file name

OUT R9 = Task control block

*Uses registers RO-R6,R9,R11 of calling Horkspace

The APPEND FILE subroutine is used to append tHO files
together. The source and destination file names are pointed
to by registers R1 and R2, respectively. The source file is
appended to the end of the destination file. The source
file is not altered.

Possible Errors:

60 = lnva 1i d file n8118
53 = File not defined
60 = File space full
62 = File already open

68 = Disk not formatted
69 =No more file slots
Disk errors

APFL: LI R1,SFILEN ;SOURCE FILE NAME
Ll RZ,OFILEN ;DESTINATION FILE NAME
XAPF ;APPEND

JHP ERROR ;ERROR RETURN
;NORMAL RETURN

SF !LEN TEXT 'FILE1'
BYTE 0

OFlLEN TEXT 'FlLE2'
BYTE 0

===--==;===
PODS 2.4 DOCUMENTATION CHAPTER 5 PODS ASSEMBLY PRIMITIVES PAGE 5-40
===

5.4.2 XCFA- CLOSE FILE WITH ATTRIBUTES

Mnemonic: XCFA
Value: >2FB7

Format: XCFA
error

Registers: IN R1 = FILE ID
R2 =File type

The CLOSE FILE HITH ATTRIBUTES primitive closes an open
file identified by FILE ID. At the same time, the file
attributes are updated to the contents of the left byte of
register RZ. Register R1 contains the FILE IO.

If the file Has opened for sequential access and the file
has been updated, then the END-OF-FILE marker is set at the
current file pointer. If the file Has opened for random or
shared access, then the END-OF-FILE marker is updated only
if the file has been extended (data Has Hritten after the
current END-OF-FILE marker.)

The LAST UPDATE is updated to the current date and time
only if the file has been altered.

All files must be closed Hhen opened! OtherHise, directory
information is be lost and possibly even the file itself.

Possible Errors:

52= File not open
59= Invalid file slot
75 =File locked
Disk errors

HOV iFILlD,R1
Ll RZ, >2000
XCFA

;GET FILE ID
;CLOSE AS OBJECT
;CLOSE FILE

JHP ERROR

DATA 0 ;FILE lD FlLIO
FILEN TEXT 'FILENAHE:EXT'

BYTE 0

R2 = >BOOO
= >4000
= >2000
= >1000
= >0800
= >0400
= >0200
= >0100
= >0000

AC or Procedure file
BN or Binary file
08 or 9900 object file
SY or Condensed 9900 object file
BX or BASIC binary token file
EX or BASIC ASCII file
TX or Text file
Undefined
Clear file attributes

FILE ID = (Disk#) x 256 + (File slot index)

===--==--==
PODS 2.4 ODCUHENTATION CHAPTER 6 _POOS ASSEMBLY PIUMlTlVES PAGE 5-41

===

5.4.3 XCHF - CHAIN FILE

Hnemon i c: XCHF
Value: >2F41

Format: XCHF
error return only

Registers: IN (R1) =File name

LI R1,FILEN
XCHF
XERR

FILEN TEXT 'NEXTPRGM'
*Uses all registers of calling HOrkspace BYTE 0

The CHAIN FILE subroutine is used by the PODS monitor to
execute program files. The primitive chains from one
program to another independent of file type.

Register R1 points to the chain file name. The file type
determines hoH the file is to be executed. lf the file is
typed '08' or 'SY', then the 9900 object loader is called
(XLDF). If the file is typed 'BX' or 'EX', then the PODS
BASIC interpreter loads the file and begins executing at the
loHest line number. LikeHise, if the file is typed 'AC',
then centro 1 returns back to the POOS monitor and further
requests for console characters reference the file.

The XCHF call returns only if an error occurs during the
chain operation. All other errors, such as those occurring
in BASIC, return to the PODS monitor.

Parameters may be passed from one program to another
through the user TEMP variables locate~ in the task control
block. These are located at i>1FA(9), i>1FC(9), and
i>1FE(9).

Possible Errors:

50= Invalid file name
53 =File not defined
60 =File space full
61 = No start address
63 =Illegal object tag
64 = Checksum error
65 = Exceeds task size
66 = File not loadable
77 = Procedure not memory resident
Disk errors

;GET FILE NAME
;CHAIN FILE
;PROBLEM

===
PDOS 2. 4 DOCUMENT A TlON CHAPTER 5 PODS. ~SSEHBL V PRlHITlVES PAGE 5-42
===~===

5.4.4 XCLF - CLOSE FILE

Mnemonic: XCLF
Value: >ZF86

Format: XCLF
error

Registers: IN R1 = FILE IO

The CLOSE FILE primitive closes an open file identified by
FILE ID. Register R1 contains the FILE ID. If the file Has
opened for sequential access and the file HBS updated, then
the END-OF-FILE marker is set at the current file pointer.

If the file Has opened for random or shared access, then
the END-OF-FILE marker is updated only if the file Has
extended (ie. data Has Hritten after the current END-OF-FILE
marker).

If the file has been altered, the current date and time is
store in the LAST UPDATE variable of the file directory.

All files must be closed Hhen opened! OtherHise, directory
information is lost and possibly even the file itself.

Possible Errors:

52 = File not open
59 = Invalid file slot
75 =File locked
Disk errors

HOV ~ILlD,R1
XCLF

JHP ERROR

;GET FILE IO
;CLOSE FILE

FlLIO DATA 0 ;FILE IO

FILE ID = (Disk #) x 256 + (File slot index)

===
PDOS 2.4 DOCUMENTATION CHAPTER 5 POOS ASSEMBLY PRIMITIVES PAGE 5-43

==~===

5.4.5 XCPY - COPY FILE

Mnemonic: XCPY
Value: >2F42

Format: XCPY
error

Registers: IN R1 = Source file name
R2 =Destination file name

OUT R9 = Task control block

*Uses registers RO-R6,R9,R11 of calling Horkspace

The COPY FILE primitive copies the source file into the
destination file. The source file is pointed to by register
R1 and the destination file is pointed to by register R2. A
control C halts the copy, prints 'AC' to the console, and
returns.

The file attributes of the source file are automatically
transferred to destination file.

Possible Errors:

50 =Invalid file name
53 = File not defined
60 =File space full
62 =File already open
68 = Disk not formatted
69 =No more file slots
70 = Position error
Disk errors

Ll R1,FILES
Ll RZ,FILEO
XCPY

JMP ERROR

FILES TEXT 'TEMP'
BYTE 0

FILED TEXT 'TEMP:BK/1'
BYTE 0

;SOURCE FILE NAME
;DESTINATION FILE NAME
;COPY FILE
;PROBLEM
;CONTINUE

================--======~=======~~===~=======~==~~;~~~~~~=;~.==~~=~=================================
PDOS 2.4 DOCIJHENTATlON PAGE 5-44
===========--==========--===================~~==:.====~,~~~~-~~~=~-~~====. ==~•=n=======-=====--~~~·=~=~==~==============================

5.4.6 XDFL - DEFINE FILE

Hnemoni c: XDFL
Value: >2F80

Format: XDFL
error

Registers: IN- RO =File size
(R1) =File name

The DEFINE FILE pri•itive creates in a PODS disk , directory
a neH file entry, specified by register R1. A PODS file
name consists of an alpha character fo110Hed by up to 7
additional characters. An optional 3 character extension
can be added if preceded by a colon. L ikeNise, the
directory level and disk number are optionally specified by
a semicolon and slash respectively.

Register RO contains the nuiRber of sectors to be initially
allocated at file definition. lf register RO is nonzero,
then a contiguous file is created Hith RO sectors.
OtherHise, only ona sector is allocated and a non-contiguous
tag assigned. Each sector of allocation corresponds to 252
bytes of data.

A contiguous file facilitates random access to file data
since PDOS can directly position to ~ byte Hithin the file
Hithout having to follOH sector links. A contiguous file is
aut018tically changed to a non-contiguous file if it is
extended past its initial allocation.

Possible Errors:

50 = Invalid file na11e

51 =File already defined
67 =File directory full
62 = File already open

68 = Disk not fonaatted
Disk errors

Cl.R RO
Ll R1,FlLEN1
XDFL

XERR

u R0,100
U R1,FILEN2
XDFL

XERR

.. ;SEQUENTlAL FILE
;GET FILE NAHE
;DEFINE FILE
;ERROR

;RANDOM ACCESS FILE
;GET FILE NAHE
;DEFINE CONTIGUOUS FILE

RO > 0 Contiguous file Hith RO sectors

RO = 0 Non-contiguous f i 1 e

===
PDOS 2.4 DOCUMENTATION CHAPTER 5 PODS ASSEMBLY PRIMITIVES PAGE 5-45

======--===~===~==

5. 4. 7 XDLF - DELETE FILE

Hnemon i c: XDLF
Value: >2F81

Format: XDLF
error

Registers: IN' (R1) = File name

The DELETE FILE primitive removes from the disk directory
the file Hhose name is pointed to by register R1 and
releases all sectors associated Hith that file for use by
other files on that same disk. A file cannot be deleted if
it is delete (*) or Hrite (**) protected.

Possible Errors:

50 = lnval id file name
53 = File not defined
58 = File delete or Hrite protected
62 = File already open
68 = Disk not formatted
Disk errors

Ll R1,FlLEN
XDLF

JMP ERROR

FILEN TEXT 'TEMP/2'
BYTE 0

;GET FILE NAME PTR
;DELETE FILE
;ERROR
;NORMAL RETURN

-----=========:===-=·-====-==-=--==-=============·==-•u••r:~:~t:=====-==-=-=====· ===~=:::============================ -------------------
POOS 2. 4 DOCUIENTATlON CHAPTER s· PillS AS!EMaLY.t'IUHlTlVES PAGE 5-46
===============--==========--==========================4::=-=====-===--=========----=====================================

5.4.8 XFFN - PIX PILE NAME

Hnellonic: XFFN
Value:)2f48

FOI"'I8t: XFFN
error

Registers: IN (R1) = File name

OUT RO = Disk I
(R1) = Fixed file name
R9 = Task control block

*Uses registers RO•R3,R9,R11 of calling HOrkspace.

The FIX FILE NAME subroutine parses a character string for
file name, extension, directory level, and disk f'IUIIIber. The
results are ret\rned in the 32 char'acter 110nitor HOI"k buffer
(HHB(9)). Register RO is also returned Hith the disk
I"'UUIIber. The error retwn is used for an invalid file name.

The 1110nitor HOI"k buffer is cleared and the follOHing
assignments are llade:

aD(1) = File ,..
i8(1) = File extension

i11(1) = File directory level

Syst .. defaults are used for the disk l'lUIIber and file
directory level Hhen they are not specified in the file
name.

Possible Errors:

50= Invalid file name

(R1) ==>

XGLU
XFFN

XERR

; GET INPUT LINE
;FIX FILE NAME
;ERROR IN NAHE

0 2 4 6 B 10 12 14 16

·---·---·---·---·---·---·---·---·
I File name I Ext Ill DO==>

·---------------·-----·-·-------

I~

===:===
PDOS 2.4 DOCUMENTATION CHAPTER 6 PDOS ASSEMBLY PRIMITIVES PAGE 5-47

===--===

5 • 4. 9 XLDF - LOAD FILE

Hnemoni c: XLDF
Value: >2F44

Format: XLDF
error

Registers: IN RO = Start memory address
R1 = End memory address

(RZ) = File name

OUT RO = Entry address
R9 = Task control block

*Uses all registers except R10

The LOAD FILE primitive reads and loads Tl9900 object code
into user memory. The file name pointer is passed in
register RZ. Registers RO and R1 specify the memory bounds
for the relocatable load. The file must be typed 'OS' or
'SY'.

The TI9900 object must be relocatable and register RO is
returned to the calling routine Hith the program entry
address. If register RO equals zero, no start has been
found. Valid Tl9900 object tags for 'OS' files ere defined
as folloHs:

0 = Program ID
1 = Illegal

*2 = Relocatable entry
3 = Illegal
4 =Illegal
5 = Illegal
6 = Illegal
7 = Checksum

Tag Meaning

8 = Ignore checksum
9 =Illegal

*A = Relocatable address
*S = Absolute data
*C = Relocatable data
D = Illegal
E = Illegal
F = End of record

A 'SY' file is generated from an 'OS' file by the SYF!LE
utility. The condensed object code contains only 4 types of
object tags, each follOHed by a Z-byte binary number. These
are indicated by an asterisk (*) in the above table.

Possible Errors:

63 = !~legal tag character
64 = Checksum -error
65 =Memory limit exceeded
66 =File not loadable
Disk errors

XGHL ;GET MEMORY LIMITS
AI RO, >0100 ;ADD DISPLACEMENT
Ll RZ,FILEN ;GET FILE NAME
XLDF ;LOAD FILE

XERR ;ERROR
MOV RO,RO ;OK ADDRESS?

JEQ ERROR ;N
S *RO ;Y, GOTO ROUTINE

OOOOOIDT=HEREAOOOOS6865S6C6CC6F5FZOOOOF

AxxBheS11Co_Zxx

==~=======~=-==
PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PIUH.tTlVES PAGE 5-48
===

5.4.10 XLFN - LOOKUP FILE NAME

Mnemonic: XLFN
Value: >2FD8

Format: XLFN
Found

Not found

Registers: lN RO = Disk #
(R1) = File name

OUT R3 = FILE ID
R7 =File slot address

The LOOKUP FILE NAHE primitive searches through the file
slot table for the file name as specHied by registers RO
and R1. If the name is not found, register R3 returns with
a -1. OtherHise, register R3 returns the associated FILE IO
and register R7 the address of the file slot.

A file slot is a 32 byte buffer Hhere the status of an open
file is maintained. There are 32 file slots available. The
FILE ID consists of the disk # and the file slot index.

File slots assigned to read only files are skipped and not
considered for file match.

Possible Errors: None

XNOP HOV i2(13) ,R1 ;GET FILE ID
XFNH ;FIX FILE NAME

XSER ;ERROR
XLFN ;LOOKUP NAME, FOUND?

JHP ERR62 ;Y, FILE ALREADY OPEN

ERR62 XERS ;FILE ALREADY OPEN
DATA 62

~I

I~

===
PDOS 2.4 DOCUHENTATION CHAPTER 5.PooS ASSEMBLY PRIHITIVES PAGE 5-49

' ' ,.,

===

5.4.11 XLKF - LOCK FILE

Mnemonic: Xl.KF
Value: >2F91

Format: Xl.KF
error

Registers: IN R1 = FILE 10

The LOCK FILE primitive locks an OPENed file such that no
other task can gain access unti 1 an UNLOCK FILE (XULF) is
executed.

A locked file is indicated by a -1 (>FF) in the left byte
of the lock file parameter (LF) of the file slot usage (FS)
command. The locking task number is stored in the left byte
of the task number parameter (TN). Only the locking task
has access to the locked file.

Possible Errors:

52= File not open
59 = Invalid file slot
75 = File locked
Disk errors

MDV iFILEIO,R1 ;GET FILE IO
XLKF ;LOCK FILE

JHP ERROR ;PROBLEM

=====================================----=----;--~======= .. ======·--=-===
PDOS 2. 4 OOCtJ£NTATlON OtAPTER 6 PODS ASSEM8LY PlUflTlVES PAGE 5-50
=======================================-·= --,=====-======-==========~===

5.4.12 XLST - LIST PILE DIRECTORY

Mnemonic: lCLST

Value: >2F45

Forut: lCLST

error

Registers: lN (R1) =List string

OUT R9 = Task control block

*Uses registers RO-RB,R9,R11

The LlST FILE OlRECTORY subroutine causes PDOS to output to
the console terminal a forutted file direc:tary 11sttng,

according to the select string pointed to by register R1.

The output is interrupted at any till8 by a character being

entered on the console port. An <esc> character returns
contra 1 to the PODS monitor.

(See 4.17 LlST OlRECTORY.)

Possible Errors: Disk Errors

HLST XGNP ;GET SELECT LlST

JH HI.ST02 ;PARAMETER OIC

Ll R1,NULL ; USE NULL STRING

*
HL.ST02)CLST ; CALL FOR LIST

XERR ;ERROR
XEXT ; EXIT TO MONITOR

~
I

~
\

===
PODS 2.4 OOCUHENTATIDN CHAPTER 5 PODS ASSEMBLY PRIMITIVES PAGE 5-51

===

5.4.~3 XNOP - OPEN SHARED RANDOM FILE

Mnemonic: XNOP
Value: >2F85

Format: XNDP
error

Registers: IN (R1) = File name

OUT RD = File type
R1 = FILE IO

The OPEN SHARED RANDOM FILE primitive opens a file for
shared random access by assigning the file to an area of
system memory called a file slot. A FILE IO and file type
are returned to the calling program in registers R1 and RO,
respectively. Thereafter, the file is referenced by the
FILE 10 and not by the file name. A new entry in the file
slot table is made only H the f.ile is not already opened
for shared access.

The FILE ID (returned in register R1) is a 2-byte number.
The left byte is the disk number and the right byte is the
channel buffer index. The file type is returned in register
RD.

The END-OF-FILE marker on a shared file is changed only
Hhen the file has been extended. All data transfers are
buffered through a channel buffer; data movement to and from
the disk is by full sectors.

An "opened count• is incremented each time the file is
shared-opened and is decremented by each close operation.
The file is only closed by PODS Hhen the count is zero.
This count is saved in the right byte of the locked file
parameter (LF) listed by the file slot usage command (FS).

Possible Errors:

50 = Invalid file name
53= File not defined
60 =File space full
62 =File already open
68 = Disk not formatted
69 =No more file slots
Disk errors

Ll R1,FILEN
XNDP

JMP ERROR
HOV RO,iiiFILET
MDV R1,iiiFILlD

;GET FILE NAME
;OPEN SHARED FILE
;ERROR
;SAVE TYPE
;SAVE FILE IO

FILET DATA 0
FlLIO
FILEN

DATA 0
TEXT 'FILENAME:EXT'
BYTE 0

FILE ID = (Disk #) x 256 + (File slot index)

======:::==--==---------===========--==---- ---=· =====-==··==================-==========-==
PDOS Z. 4 DOCUMENTATION CHAPTER 5 PDOS ASSEHBLY PRlHITlVES PAGE 5•5Z

==--======-==-====----=======--===============--=================-========== ==

5.4.14 XPSF - POSITION FILE

Hnellonic: XPSF
Value: >ZFBC

Fonaat: XPSF
error

Registers: IN R1 = FILE ID
RZ,R3 = Byte position

The POSITION FILE primitive IIOV8S the file byte pointer to
any byte position within a file. The FILE lD is given in
register R1 and the tHO NOrd byte index is specified in
registers RZ and R3.

The file IIUSt have been opened for randolt access (ROPEN or
SOPEN). An error ocetrs if the byte index is greater then
the current End-of-File marker.

A contiguous file greatly enhances the speed of tha
pos;tion couand since the desired sector is directly
COIIIpUted. HoHever, the position COM80d does work with
non-contiguous files, as PDOS follOHS the sector links to
the desired byte position.

A contiguous file is extended by positioning to the
End-of-File mrker and Hl"'i ting data. HoHever, PODS alters
the file type to non-contiguous and rendoll access is IIUCh
SlOHer.

Possible Errors:

5Z = File not open
59 = Invalid file slot
70 = Post t ion error
Disk errors

HOV aF1LlD,R1 ;GET FILE ID
HOV iRECN,RZ ;GET RECORD I
HPY at36,RZ ; GET BYTE INDEX
XPSF ;POSITION HlTHlN FILE

XERR

FlLlD DATA 0 ;FILE ID
RECN DATA 0 ;RECORD I
C36 DATA 36 ;BYTES/RECORD

~
I

===
PODS 2.4 DOCUMENTATION CHAPTER 6 POOS ASSEMBLY PRIMITIVES PAGE 5-53
===

5. 4. 15 XRBF - READ BLOCK

Hnemon i c: XRBF
Value: >2F88

Format: XRBF
error

Registers: IN RO = # of bytes to be read
R1 = FILE !D

(R2) = Buffer address

OUT R3 = # of bytes read on error

The READ BLOCK primitive reads the number of bytes
specified in register RO from the file specified by the FILE
ID in register R1 into the user memory as pointed to by
register R2. If the channel buffer has been rolled to disk,
the least used buffer is freed and the desired buffer is
restored to memory. The file slot 10 is placed on the top
of the last-access queue.

lf an error occurs during the read operation, the error
return is taken Hith the error number in register RO and the
number of bytes actually read in register R3.

The read is independent of the data content. The buffer
pointer in register R2 is on any byte boundary. The buffer
is not terminated Hith a null.

A byte count of zero in register RO results in one byte
being read from the file. This facilitates single byte data
acquisition.

Possible Errors:

52 =File not open
66 =End of file
59= Invalid file slot
Disk errors

ERROR

FlLID
NUMB
BUFF

Ll RO,NUHB
HOV ~FIL!D,R1
Ll R2,BUFF
XRBF

JHP ERROR

Cl R0,56
JNE ERROR2

MDV R3,~NUHB

DATA 0
DATA 0
BSS 132

CLR RO
HOV ~FILED,R1
SHIP R2
XRBF

JHP ERROR

;GET NUMBER OF BYTES
;GET FILE ID
;GET BUFFER POINTER
;READ DATA

;EOF?
;N
;Y, SAVE #BYTES READ

;# OF BYTES TO READ
;BUFFER

;READ 1 CHARACTER
;GET FILE SLOT 10
;READ CHARACTER INTO RO
;READ CHARACTER

==--==
PDOS 2.4 DOCUMENTATION CHAPTER 5 POOS ASSEHBLY PRIMITIVES PAGE 5-54
===

5.4.16 XRDE - READ DIRECTORY ENTRY

Hnemoni c: XRDE
Value: >2F40

Forll8t: XRDE
error

Registers: IN RO = Disk I
R1 = Read flag

(R2) =,Last 32 byte directory entry
i>1F2(9) = Sector I
i>1F4(9) = I of directory entries

OUT RO = Disk I
(RZ) = Next 32 byte directory entry
R9 = Task control block

i>1FZ(9) = Sector I
i>1F4(9) = I of directory entries

*Uses registers RO-R4,R9,R11 of calling Horkspace

The READ DIRECTORY ENTRY subroutine reads sequentially
through a disk directory. If register R1 is zero, then the
routine begins Hith the first directory entry. If register
R1 is nonzero, then based on the last directory entry
(pointed to by register R2), the next entry is read.

The calling routine must maintain registers RO and R2, the
user I/0 buffer, and temps >1F2(9) end >1F4(9) of the task
control block betHeen calls to XRDE.

Possible Errors:

53 =File not defined (End of directory)
68 = Disk not formatted
Disk errors

START CLR R1 ;BEGIN HITH 1ST ENTRY

*
LOOP

*
LOOP02

JHP LOOP02

SETO R1 ;READ NEXT ENTRY

HOY iTSH1(9),RO ;GET DISK I
XRDE ;READ DIRECTORY ENTRY

XERR ;ERROR
HOY i12(2),R4 ;GET FILE TYPE

~
!

==~
PDOS 2.4"DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIHITIVES PAGE 5-55
===

5.4.17 XRDN - READ DIRECTORY NAME

Mnemonic: XRDN
Value: >2F4E

Format: XRON
error

Registers: IN RD = Disk I
MHB =File name

OUT RO = Disk I
R1 = Sector I in memory

(R2) = Directory entry
R9 = Task control block

*Uses registers RD-R5,R9,R11 of calling HDrkspace

The READ DIRECTORY NAME subroutine reads directory entries
by fHe name. Register RD specifies the disk number. The
file name is located in the Monitor Hork Buffer (HHB) in a
fixed format. Several other parameters are returned in the
monitor TEMP storage of the user status buffer. These
variables assist in the housekeeping operations on the disk
directory.

(See 5.4.9 FIX FILE NAME.)

Possible Errors:

53= F11e not defined
68 = Disk not formatted
Disk errors

OPENF MOV ~2(13),R1 ;GET FILE NAME POINTER
XFNH ;FIX NAME lN HHB

XSER ;ERROR
XRDN ;REAO DIRECTORY ENTRY

XSER ;ERROR
CB *RZ,i824 ;$? (DRIVER?)

~>172(9) => Monitor Hork Buffer

===--===----=--==
PDOS 2.4 DOCUHENTATlON CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 6-66

=================--=-==-=====

5.4.18 XRPA - READ FILE ATTRIBUTES

Mnemonic: XRFA
Value: >ZFSE

FOI"'I8t: XRF A
error

Registers: lN (R1) = File name

OUT R2 = File attribute

The READ FILE ATTRlBUTES primitive returns in register RZ
the 16-bit file attributes Hord. The file name is pointed
to by register R1. File attributes are defined as folloHs:

>80xx AC - PROCEDURE FILE
>40xx BN - BINARY FILE
>20xx 08 - 9900 OBJECT FILE
>10xx SY - SYSTEM OBJECT FILE
>OBxx BX - BASIC TOKEN FILE
>04xx EX - BASIC ASCII SOURCE FILE
>02xx TX - ASCII TEXT FILE
>01xx UO - USER DEFINED FILE

>xx04 c - CONTIGUOUS FILE
>xx02 * - DELETE PROTECT
>xx01 ** - DELETE AND HRITE PROTECT

Possible Errors:

50= Invalid file name
53 = File not defined
60 = File space full
Disk errors

LI R1,FILEN
XRFA

XERR
SRL R2,2

JNCPNO

FILEN TEXT 'PRGH:BIN'
BYTE 0

;GET FILE NAME
;READ FILE ATTRIBUTES
;PROBLEM
;BINARY FILE?
;N
;Y

~
i

,-.,
\

===
PODS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-57
===

5 • 4 .l. 9 XRLF - READ LINE

Hnelllonic: XRLF
Value: >2FB9

FOI"'INNt: XRLF
error

Registers: IN R1 = FILE ID
(R2) = Buffer address

OUT RO = Error I
R3 = I of bytes read on error

The READ LINE primitive reads one line, delimited by a
carriage return <CR>, from the file specified by the FILE ID
in register R1. If a <CR> is not encountered after 132
characters, then the line and primitive are terminated.
Register R2 points to the buffer in user memory Hhere the
line is to be stored. If the channel buffer has been rolled
to disk, the least used buffer is freed and the buffer is
restored to memory. The file slot ID is placed on the top
of the last-access queue.

If an error occurs during the read operation, the error
return is taken with the error number in register RO and the
number of bytes actually read in register R3.

The line read is dependent upon the data content. All line
feeds <LF> are dropped from the data stream and the <CR> is
replaced with a null. The buffer pointer in register R2 is
on any byte boundary. The buffer is not terminated Hith a
null on an error return.

Possible Errors:

52 = File not open
56 = End of file
59= Invalid file slot
Disk errors

HOV iilFlllD,R1
Ll R2,BUFF
XRLF

JHP ERROR

FlLlD DATA 0

;GET FILE ID
;GET BUFFER POINTER
;READ LINE

BUFF BSS 132 ;HAXlHUH BUFFER NEEDED

============- - =====----================--=======-===-~-======--==
PlXlS 2.4 DOCUHENTATlON CHAPTER 5 .PODS ASSEHBLY PRlHlTlVES PAGE 6-58

=================-----=======- -- .-:::-- ------==-==--=----==--===----===

5.4.20 XRNP - RENAME FILE

Mnemonic: XRNF
Value: >2F90

Fonaat: XRNF
error

Registers: IN (R1) = Old file name
(R2) = New file naae

The RENAME FILE Pl"i•itive renames a file in a PODS disk
directory. The old file nue is pointed to by register R1.
The neH file nae is pointed to by register RZ.

The XRNF c011111and is used to change the directory level for
any file by letting the neH fHe nat11e be a nuMJ"ic string
equivalent to the neH directory level. XRNF first attet~Pts

a convet"sion on the second pr8118ter before rtna~~ing the
file. If the string convet"ts to a number' Hithout error,
then only the level of the file is changed.

Possible Errors:

50 = Invalid file naae
61 = File already defined
Disk errors

Ll R1,FlLEN1
L1 R2,FlLEN2
XRNF

XERR
Ll RZ,LEVEL
XRNF

XERR

LEVEL DATA 10

; GET OLD FlLE NAHE
;GET NEH FlLE NAME
;RENAHE FILE
;PROBLEM
;GET NEH LEVEL
; CHANGE DIRECTORY LEVEL

FlLEN1 TEXT 'OBJECT:OLD'
BYTE 0

FlLENZ TEXT 'OBJECT:NEH'
BYTE 0

-~

===
PDOS 2.4 DOCUMENTATION CHAPTER 5 PODS ASSEMBLY PRIMITIVES PAGE 5-59

===

5.4.21 XROO - OPEN READ ONLY RANDOM FILE

Hnemon i c: XROO
Value: >2F82

Fonnat: XROO
error

Registers: IN (R1) =File name

OUT RO = File type
R1 = FILE ID

The OPEN READ ONLY RANDOM FILE primitive opens a file for
random access by assigning the file to an area of system
memory called a file slot, and returning a FILE ID and file
type to the calling program. Thereafter, the file is
referenced by the FILE IO and not by the file name. This
type of file open provides read only access.

The FILE IO (returned in register R1) is a 2-byte number.
The left byte is the disk number and the right byte is the
channel buffer index. The file type is returned in register
RD.

Since the file cannot be altered, it cannot be extended nor
is the LAST UPDATE parameter changed Hhen it is closed. All
data transfers are buffered through a channel buffer and
data movement to and from the disk is by full sectors.

A neH file slot is allocated for each XROO call even if the
file is already open. The file slot is allocated beginning
Hith slot 1 to 32.

Possible Errors:

50= Invalid file name
53= File not defined
62 =File already open
68 = Disk not formatted
69 =No more file slots
Disk errors

Ll R1,FILEN
XROO

JHP ERROR
MOV RO,;FILET
MOV R1,;FILID

FILET DATA 0
FlLID DATA 0

;GET FILE NAME
;OPEN READ ONLY FILE
;ERROR
;SAVE TYPE
;SAVE FILE ID

FILEN TEXT 'FILENAME:EXT'
BYTE 0

FILE IO = (Disk#) x 256 + (File slot index)

==--==-==-=----=--=:z:z:s:-- =====---===
PODS 2. 4 ODCUHENTA TIDN CHAPTER 6 PODS ASSEH8I.. Y PRlHITlVES PAGE 5-60

=====--====----== -----=------=----=-==---=====--==-==

5.4.22 XROP - OPEN RANDOM PILE

Hnellonie: lCROP
Value: >2F83

For•t: XROP
error

Registers: IN (R1) = File name

OUT RD = File type
R1 =FILE 10

The OPEN RANDOM FILE primitive opens a file for randoat
access by assigning the file to an area of syet• memory
called a file slot, and returning a FlLE 10 and file type to
the calling progr•. Thereafter, the file is referenced by
the FlLE ID and not by the file n81118.

The FILE ID (returned in register R1) is a 2-byte number.
The left byte is the disk number and the right byte is the
channel buffer index. The file type is retw'necl in register
RD.

The END-oF-FILE IINirker on a randOII file is changed only
Hhen the file has been extended. All data transfers are
buffered through a channel buffer and data IIOVSMnt to and
from the disk is by full sectors.

The file slot is allocated beginning Hith slot 32 to slot
1.

Possible Errors:

50 = lnval id file natll8

53 = File not defined
62 = File already open
68 = Disk not formatted
69 = No .are file slots
Disk errors

FILET
FlUD
F!LEN

LI R1,FILEN
XROP

JHP ERROR
HDV RD,aFILET

HOV R1,aFIL1D

DATA 0
DATA 0

; GET FILE NAHE
;OPEN RANDOM FILE
;ERROR
;SAVE TYPE
;SAVE FILE lD

TEXT "FILENAHE:EXT'
BYTE 0

FILE IO = (Disk I) x 256 + (File slot index)

===
PODS 2.4 DOCUHENTATION CHAPTER 5 POOS ASSEMBLY PRIMITIVES PAGE 5-61

===

5,4,23 XRST - RESET FILES

Hnelllon i c: XRST
Value: >2F46

Format: XRST

Registers: IN R1 = Reset type

The RESET FILES primitive closes all open files either by
task or disk number. The command also clears the assigned
input FILE !D. If register R1 equals -1, then all files
associated HUh the current task are closed. OtherHise,
register R1 specifies a disk and all files opened on that
disk are closed.

XRST has no error return and hence closes all files even
though errors occur in the c 1 ose process. This is necessary
since files may be opened on a Hrite protected disk, for
instance, and a error occurs before the files could be

closed.

Possible Errors: None

5, 4, 24 XRWF - REWIND FILE

Hnemoni c: XRHF
Value: >2F80

Format: XRHF
error

Registers: IN R1 = FILE ID

The REHINO FILE primitive positions the file specified by
the FILE ID in register R1, to byte position zero.

Possible Errors:

52= File not open
59 = Invalid file slot
70 = Position error
Disk errors

DONE SETO R1
XRST

HOV aDISKN,R1
XRST

REHINO HOV aFILIO,R1
XRHF

XERR

FILID DATA 0

;CLOSE ALL TASK FILES

;PREPARE TO REMOVE DISK
;CLOSE ALL FILES
;REMOVE DISK

;GET FILE ID
;REHINO FILE
;PROBLEM

===~==--=====~--==============--===================================
PDOS 2. 4 OOCUHENT AT ION DIAPTER 5 PQOS ASSEHII.Y PRlHITIVES PAGE 5-62

====================================--========--===========--==---========-===

5 , 4. 25 XSOP - OPEN SEQUENTIAL PILE

Mnemonic: XSOP
Value: >2F84

Forut: XSOP
error

Registers: IN (R1) = File name

OUT RO =File type
R1 = FILE ID

The OPEN SEQUENTIAL FILE primitive opens a file for
sequential access by assigning the file to an area of systea
111811101")' called a file slot and returning a FILE 10 and file
type to the calling progr•. Thereafter, the fila is
referenced by the FILE ID and not by the file name.

The FILE IO (retl.rned in register R1) is a 2-byte nu.ber.
The left byte is the disk number and the right byte ts the
channel buffer index. The file type is returned in RO.

The END-OF-FILE lllll"'ker on a sequential file is changed

Hhenever data is Hritten to the file. All data transfers
are buffered through a channel buffer; data .ove~~ent to and
frOJR the disk is by full sectors.

The file slots ere allocated begiming Hith slot 32 doNn to
slot 1.

Possible Errors:

50 = Invalid file name
53 = File not defined
62 = File already open

68 = Disk not formatted
69 = No more file slots
Disk errors

Ll R1,FILEN

XSOP
JHP ERROR

HOV RO, aFILET
HOV R1 , aFILlO

FILET DATA 0
FILlD DATA 0

;GET FILE NAME
;OPEN SEQUENTIAL FILE
;ERROR
;SAVE TYPE
;SAVE FILE ID

FlLEN TEXT 'FlLENAHE:EXT'
BYTE 0

FILE lD = (Disk I) x 256 + (File slot index)

===
PODS 2.4 DOCUMENTATION CHAPTER 5 POos' ASSEHBL Y PIUHITlVES PAGE 5-63

===

5.4.26 XSZF - SIZE DISK

Mnemonic: XSZF
Value: >2F47

Format: XSZF
error

Registers: IN RO = Disk II

OUT R5 = Largest contiguous block
R6 = Number of sectors allotted
R7 = Number of sectors used
RS = Number of free sectors
R9 = Task control block

*Uses registers R1-RS,R9,R11 of calling Horkspace

The SIZE DISK subroutine returns disk size parameters in
registers R5, R6, R7, and RS. Register R7 returns the total
number of sectors used by all files. Register R6 returns
the number of sectors allocated for file storage.

Register RB is calculated from the disk sector bit map and
reflects the number of sectors available for file
allocation. Register R5 is returned Hith the size of the
largest block of contiguous sectors. This is useful in
defining lerge files.

Possible Errors:

68 = Disk not formatted
Disk errors

*
SPH1

SPH2
SPH3

SPH4

CLR RO ;SELECT DISK 110

XSZF ;GET DISK SIZE
XERR ;ERROR

HOV R8,R1
XCBH ;OUTPUT FREE

DATA SPH1
XPLC ;PRINT
HOV R5,R1
XCBM ;OUTPUT LARGEST

DATA SPM2 . CONTIGUOUS BLOCK
XPLC
XTAB ;TAB TO COLUMN 20

DATA 20
MOV R7,R1
XCBM ;OUTPUT USED

DATA SPH3
XPLC ;PRINT
HOV R6,R1
XCBH ;OUTPUT ALLOCATED

DATA SPM4
XPLC ;PRINT
XEXT

BYTE >OA,>OD
TEXT 'FREE: '
BYTE 0
BYTE >2C,O
TEXT 'USED: '
BYTE 0
TEXT '/'
BYTE 0

===·===
PODS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEHEit. V PRlHlTlVES PAGE 6-64
===--======-======-===

5.4.27 XULF - UNLOCK PILE

Mnemonic: XULF
Value: >2F9Z

Format: XULF
error

Regbters: lN R1 : FILE ID

The UNLOCK FILE primitive unlocks a locked file for access
by any other task.

(See 6.4.11 XLKF- LOCK FILE.)

Possible Errors:

52 = File not open
59 = Invalid file slot
Disk errors

HOV aFILID,R1
XULF

XERR

FlllD DATA 0

;GET FILE ID
;UNLOCK FILE

;FILE ID

~
!

===
PODS 2.4 DOCUMENTATION CHAPTER 6 PDOS ASSEMBLY PRIMITIVES PAGE 5-65
===

5 • 4. 28 XWBF - WRITE BLOCK

Hnemoni c: XHBF
Value: >2FBA

Format: XHBF
error

Registers: IN RO = Byte count
R1 = FILE ID

(R2) = Buffer address

The HRITE BLOCK primitive Hrites from a memory buffer,
pointed to by register R2, to a disk file specified by the
FILE ID in register R1. Register RO specifies the number of
bytes to be Hritten. If the channel buffer has been rolled
to disk, the least used buffer is freed and the buffer is
restored to memory. The file slot ID is placed on the top
of the last-access queue.

The Hrite is independent of the data content. The buffer
pointer in register R2 is on any byte boundary. The Hrite
operation is not terminated Hith a null.

A byte count of zero in register RO results in no data
being Hritten to the file.

If it is necessary for the file to be extended, PODS first
uses sectors already linked to the file. If a null or end

1 ink is found, a neH sector obtained from the disk sector
bit map is linked to the end of the file. If the file Has
contiguous, it is retyped as a non-contiguous file.

Possible Errors:

52 = File not open
59 = Invalid file slot
Disk errors

Ll R0,262 ;HRIT~ FULL SECTOR
HOV iF IllD, R1 ;GET ID
Ll R2,BUFFER ;GET BUFFER ADDRESS
XHBF ;HRITE TO FILE

XERR

FILlD DATA 0 ;FILE 10
BUFFER BSS 252 ;SECTOR BUFFER

RO = 0 Hrite no data

Extended file

Contiguous changes to non-contiguous

==--==
PODS 2.4 DOCUMENTATION CHAPTER 5 PODS ASSEMBLY PRIMITIVES PAGE 6-66

===

5.4.29 XWFA - WRITE FILE ATTRIBUTES

Mnemonic: XHFA
Value: >2FBF

Format: XHFA
error

Registers: IN (R1) = File name
(RZ) = ASCII file attributes

The HRITE FILE ATTRIBUTES primitive sets the attributes of
the file specified by the file nama pointed to by register
R1. Register RZ points to an ASCII string containing the
neH file attributes. The formbt is:

(RZ) = {file type}{protection}

{file type} = AC - PROCEDURE FILE
BN - BINARY FILE
DB - 9900 OBJECT
SY - SYSTEM FILE
BX - BASIC TOKEN FILE
EX - BASIC SOURCE FILE
TX - TEXT FILE
UO - USER DEFINED FILE

{protection} = * - Delete protect
** - Delete and Hrite protect

If register RZ equals zero, then all flags, Hith the
exception of the contiguous flag, are cleared. If register
RZ points to a '#', then the contiguous flag is cleared.

Possible Errors:

50= Invalid file name
53 = File not defined
54 = Invalid file type
Disk errors

LI R1,FILEN ;GET FILE NAHE
LI RZ,CLRC ;CLEAR CONTIGUOUS
XHFA ;HRITE ATTRIBUTE

XERR
L1 RZ,PROTF ;SET BINARY & PROTECTED
XHFA ;SET

XERR

FlLEN TEXT 'DATA:BIN'
BYTE D

CLRC TEXT 'I'
BYTE 0

PRDTF TEXT 'BN**'
BYTE D

===
PDOS 2. 4 DOCUHENT A TlON CHAPTER 5 POOS ASSEHBL Y PRlHlTlVES PAGE 5-67

=======- -:===========================--~================~::==

5.4.30 XWLF - WRXTE LINE

HneDonic: XHLF
Value: >2FBB

Format: XHLF
error

Registers: IN R1 = FlLE 10
(RZ) = Buffer address

The HRITE LlNE primitive Hrites 8 line delimited by 8 null
character to the disk fHe specified by the FILE 10 in
register R1. Register RZ points to the string to be

Hritten. lf the channel buffer has been rolled to disk, the
least used buffer is freed and the buffer is restored to
memory. The file slot lD is placed on the top of the
last-access queue.

The Hrite line c01111118nd is independent of the data content,
Hith the exception that a null character terminates the
string. The buffer pointer in register RZ is on any byte
boundary. A single Hrite operation continues until a null
character is found.

lf it is neceasery for the file to be extended, PODS first
uses sactors already linked to the file. lf a null link is
found, a neH sector obtained from the disk sector bit II8P is
linked to the end of the file. lf the fHe H8S contiguous,
it is retyped as 8 non-contiguous file.

Possible Errors:

52 = File not open
59= Invalid file slot
Disk errors

FlLlD
LINE

HOV iFILID,R1
Ll RZ,LlNE
XHI.F

XERR

DATA 0
BYTE >OA, >00

;GET FILE 10
;GET LINE
;HR!TE LINE
;ERROR

;FILE ID

TEXT 'NO DIAGNOSTICS'
BYTE 0

Null delimiter

Extended file

Contiguous changes to non-contiguous

===--===========-- ==--==
PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEHBLY PRlHlTlVES PAGE 5-68
==--==

5 • 5 SUPPORT P!UMITIVES

5.5.1 XCBD - CONVERT BINARY TO DECIMAL

Mnemonic: XCBO
Value: >2FD6

Format: XCBD

Registers: IN R1 = number

OUT (R1) = string pointer

The CONVERT BINARY TO DECIMAL primitive converts a 16 bit,
2's complement number to a character string. The number to
be converted is passed to XCBO in register R1. Register R1
is also returned Hith a pointer to the converted character
string located in the monitor HOrk buffer. Leading zeros
are suppressed and a negative sign is the first character
for negative numbers. The string is delimited by a null.

Possible Errors: None

5.5.2 XCBH - CONVERT BINARY TO HEX

Mnemonic: XCBH
Value: >2FD7

Format: XCBH

Registers: IN R1 = number

OUT (R1) = string pointer

The CONVERT BINARY TO HEX primitive converts a 16-bit
number to its hexadecimal (base 16) representation. The
number is passed in register R1 and a pointer to the ASCll
string is also returned in register R1. The converted
string is in the monitor HOrk buffer and consists of four
hexadecimal characters folloHed by a null.

Possible Errors: None

*
NUHB
SAVE

*

HOV aNUHB,R1
XCBO
HOV R1 ,aSAVE
XPLC

DATA 1234
DATA 0

HOV aNUHB,R1
XCBH
HOV R1,aSAVE
Ll RO,' >'
XPCC
XPLC

NUMB DATA 1234
SAVE DATA 0

;GET NUMBER
;CONVERT TO PRINT
;SAVE POINTER
;PRINT

;NUMBER HOLDER
;SAVE POINTER

;GET NUMBER
;GET HEX CONVERSION
;SAVE POINTER
;ADD HEX SIGN
;PRINT
;PRINT 4 HEX CHARACTERS

;NUMBER HOLDER
;SAVE POINTER

=---::::-===·=="====="====--==
PODS 2.4 DOCUHENTAT10N CHAPTER 6 POOS ASSEHBLV PRIMITIVES PAGE 5-69

===--=====--===

5,5,3 XCBM - CONVERT UNSIGNED BINARY TO DECIMAL W/MESSAGE

Mnemonic: XCBH

Value: >2FD8

Format: XCBH
DATA 1118Ssage

Registers: IN R1 = number

OUT (R1) = string pointer

The CONVERT UNSIGNED BINARY TO DECIMAL N/HESSAGE primitive

converts a 16 bit, unsigned number to a character string.

The output string is preceded by the string Hhose address

immediately follOHs the call. The string can be up to 24

characters in length and is terminated by a null character.

The number to be converted is passed to XCBH in register R1.

Register R1 is also returned Hith a pointer to the

converted character string located in the monitor Hork

buffer. Leading zeros are suppressed and the result ranges

from 0 to 65536.

Possible Errors: None

*
NUMB

SAVE

HES1

HOV ~NUHB,R1 ;GET NUMBER

XCBH ;CONVERT TO PRINT

DATA HES1

HOV R1,~SAVE ;SAVE POINTER

XPLC ;PRINT

DATA 1234 ;NUMBER HOLDER

DATA 0 ; SAVE POINTER

BYTE >OA,>OD

TEXT 'NUMB='

BYTE 0

===============--------======================--=----=:========·=·-======-===
POOS 2.4 DOCUHEHTATION CHAPTER 6_ ~ ASSEtaY"PRlHlTlVES PAGE 6-70

==----=~===

5.5.4 XCDB - CONVERT DECIMAL TO BINARY

Hnelloni c: XCDB
Value: >2FD9

Format,: XCDB
.A. no number
JH number
JEQ nullber w/o null de11•iter

Registers: 1N (R1) = string pointer

OUT RO = del imt ter
R1 =number

(R2) = updated string pointer

The CONVERT DECIMAL TO BINARY primitive converts an ASCll
string of characters to a 16 bit, 2's complesent number.
The result is returned in register R1 Hhile the status
register reflects the conversion results.

XCDB converts signed decimal, hexadecimal, or binary
numbers. Hexadecimal numbers are preceded by .,. and binary
numbers by •x•. A •-• indicates a negative nullber. There
can be no embedded b 1 anks.

A LOW status indicates that no conversion Has possible.
Register RO is retw-ned Hith the first chracter and
register R2 points i.aediately after it.

A HIGH status indicates that a good conversion has been

made, ,and the result is found in register R1. Register R2
is returned Hith an updated pointer and register RO is set
to zero.

A EQUAL status indicates that a conversion H85 made but the
ASCll string HaS not terminated Hith a null chracter. The
result is returned in register R1 and the non..,..,-ic,
non-null character is returned in register RO. Register RZ
has the address of the next character.

Possible Errors: None

~-----~---· ---- -·---

*
CONT

PTR
DFP2

HOV aPTR,R1
HOY ilDFP2,R3
XCDB

' JL ERROR
JH CONT

C1 R0,>2COO
JNE ERROR

HOY R2,R1
HOV R1,R3
XCDB

.A. ERROR
JEQ ERROR

HOV R1,RO
HOV R3,R1
HOV RO,R1

DATA PTRS
DATA 100

;GET STRING POlNTER
; GET ZNO DEFAULT
;CONVERT
;NO NUHBER
;OK
;CoMMA DELIMITER?
;N, ERROR
; Y, GET NEXT NUHBER
;SAVE FIRST RESULT
; CONVERT 2ND NUHBER
;NO NUMBER
;ONLY Z PARAMETERS
;OK, SHAP R1,R3

;R1=1ST, R3=2NO

;STRING POINTER
;2ND PARAMETER DEFAULT

===~~~=~==
PDOS 2.4 DOCUHENTATlON CHAPTER .5 PODS ASSEHBLY PRlHlTlVES PAGE 5-71
====:============================:=================-===:;_======--==

5.5.5 XGNP - GET NEXT PARAMETER

Mnemonic:
Value:

Format:

XGNP
>2FDO

XGNP
L => No parameter

EQ => Null
H => parameter

Registers: OUT (R1) = parameter

The GET NEXT PARAMETER primitive parses the monitor buffer
for the next command parameter. The routine does this by
maintaining a arrent pointer into the buffer (HlOP) and a
parameter delimiter (HDEL).

A parameter is a character string delimited by a space,
comma, period, or null. If a parameter begins Hith a left
parenthesis, then all parsing stops until a matching right
parenthesis or null is found. Hence, spaces, commas, and
periods are passed in a parameter Hhen enclosed in
parentheses. Parentheses may be nested to any depth.

A LOH status is returned if the last parameter delimiter is
a null or period. XGNP does not parse past a period. In
this case, register R1 is returned Hith a zero.

An EQUAL status is •eturned if the last parameter delimiter
is a comma and no parameter folloHs. Register R1 is
returned pointing to a null string.

A HIGH status is returned if a valid parameter is found.
Register R1 then points to the parameter.

Possible Errors: None

SPAC HOV GlFDL(9),RO ;GET SYSTEM DlSK #

SRL RO,S ;POSITION
XGNP ;GET PARAMETER, OK?

JLE SPAC02 ;N, USE DEFAULT
XCDB ;Y, CONVERT, OK?

JLE ERR67 ;N, ERROR
HOV R1,RO ;Y

*
SPAC02 XSZF ;GET OISK SIZE

XERR ;PROBLEM

.ASH SOURCE,BlN LIST ERR.SP

.CT (ASH SOURCE,BIN),15,,3

.DO ((DO DO),DO)

.LS.LS

.ASH SOURCE,,,ERR

==~--======================~============================
POOS 2.4 DOCUMENTATION CHAPTER !) PooS ASSEMI.Y l'f?lHlTlVES PAGE 5-72

===================;:=====================================~===

·~
I

