susssssasy

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

SmasBssRlstIzon

CHAPTER 5

PDOS ASSEMBLY PRIMITIVES

PDOS assembly primitives are assembly language system calls
to PD0OS. They consist of one Word XOP instructions which
use XOP vectors 13, 14, and 15. Most calls have error
returns, while others return only status or do not return at
all.

PDOS calls are divided into four categories: namely, 1)
system, 2) console 1/0, 3) files, and 4) support primitives.

5.1 PDOS ASSEMBLY LANGUAGE CALLS........ ceeverone A -
5.2 SYSTEM CALLS. ...cvvirirrrreeceeronnncnronoosenncacnns 5-5
5.2.1 XCTB - CREATE TASK BLOCK.......cccvvevnnn. 5-5
5.2.2 XERR - MONITOR ERROR CALL.........cc00nnne 5-7
5.2.3 XEXT - EXIT TO MONITOR......covveeencennnn 5-7
5.2.4 XFTD - FIX TIME & DATE......ccovvuerennnnn 5-8
5.2.5 XGML - GET MEMORY LIMITS........covuveennn 5-8
5.2.6 XGTM - GET TASK MESSAGE.........ccvvvennn. 5-9
5.2.7 XISE - INIT SECTOR.......... cesesraevrans 5-10
5.2.8 XKTB -~ KILL TASK BLOCK.....coovevuenesss 5-11
5.2.9 XLKT - LOCK TASK.....vceveeesvanesacncnes 5-12
5.2.10 XRDT - READ DATE......ccvirtrevecennnnans 5-12
5.2.11 XRSE - READ SECTOR.........ccvvveernansnns 5-13
5.2.12 XRTM - READ TIME........cccvvveuencncecnen 5-14
5.2.13 XRTS - READ TASK STATUS......covevenvennn 5-14
5.2.14 XSEF - SET EVENT FLAG....ccvveeveerennnss 5-15
5.2.15 XSTM -~ SEND TASK MESSAGE.........ccuvn... 5-16
5.2,.16 XSUI - SUSPEND UNTIL INTERRUPT........... 5-17
5.2.17 XSHP - SHAP TO NEXT TASK........cv00veeen. 5-18
5.2.18 XTEF ~ TEST EVENT FLAG......vvuvveencrans 5-18
5.2.19 XUDT - UNPACK DATE......covevnnrnmennenns 5-19
5.2.20 XULT = UNLOCK TASK.....covevnrenonnreenns 5-19
65.2.21 XUTH - UNPACK TIME........covvvernnncenn. 5-20
5.2.22 XWOT - WRITE DATE.......ccvvvvvnnannnnn. 5-20
5.2.23 XWSE - WRITE SECTOR.........vonvvuennenn. 5-21
5.2.24 XHTM = WRITE TIME.......cvovvuenecernnnns 5-22
5.3 CONSOLE I/0 PRIMITIVES.......c.vvveieeennnnncaconanns 5-23
5.3.1 XBCP - BAUD CONSOLE PORT.....cccvvvevnen. 5-23
5.3.2 XCBC - CHECK FOR BREAK CHARACTER......... 5-24
5.3.3 XCLS -~ CLEAR SCREEN......ccccveneerens .. .5-25

5.3.4 XGCC - GET CONSOLE CHARACTER CONDITIONAL.5-26
5.3.56 XGCR - GET CONSOLE CHARACTER............. 5-27

: Aosdiesme: SRS
PDOS 2.4 DOCUMENTATION - . CHAPTER' 6 P05 ASSEMBLY PRIMITIVES PAGE 5-2

SSSEREREsIsEsET

(CHAPTER 5 PDOS ASSEMBLY PRIMITIVES continued)

5.3.6 XGLB - GET LINE IN BUFFER.......ccvceveee 5-28
5.3.7 XGLM - GET LINE IN MONITOR BUFFER........5-29
5.3.8 XGLU - GET LINE IN USER BUFFER........... 5-30
5.3.9 XIPL - INTERRUPT DRIVER PUT LINE......... 5-31

5.3.10 XPBC - PUT USER BUFFER TO CONSOLE........5-32
5.3.11 XPCC - PUT CHARACTER TO CONSOLE..........5-33

5.3.12 XPCL - PUT CRLF TO CONSOLE.......c0ec00ne. 5-34
5.3.13 XPLC - PUT LINE TO CONSOLE...... covens ...5-35
5.3.14 XPMC - PUT MESSAGE TO CONSOLE...... eerss.5-36
5.3.156 XPSC ~ POSITION CURSOR........... cesenans 5-37
5.3.16 XTAB = TAB......vvvvrneereecrerennnncnnes 5-38
5.4 FILE PRIMITIVES.....cvveurenernnnneecncrscnncasannss 5-39
5.4.1 XAPF - APPEND FILE.............. ceseenans 5-39
5.4.2 XCFA - CLOSE FILE WITH ATTRIBUTES........ 5-40
5.4.3 XCHF - CHAIN FILE.......cccvviviecnnnnens 5-41
5.4.4 XCLF = CLOSE FILE......cccvvveevronnnnees 5-42
5.4.5 XCPY = COPY FILE.....ccctvrveevinnnoneenn 5-43
5.4.6 XDFL - DEFINE FILE..........ccvveevennen. b-44
5.4.7 XDLF - DELETE FILE........ccccvveeennnene 5-45
5.4.8 XFFN - FIX FILE NAME............ N)
5.4,9 XLDF - LOAD FILE.........ccvuene N .l
5.4.10 XLFN - LOOKUP FILE NAME...... N M
5.4.11 XLKF - LOCK FILE....... ceceene N - Al
5.4.12 XLST - LIST FILE DIRECTORY........ covesee 5-50
5.4.13 XNOP - OPEN SHARED RANDOM FILE........... 5-51
5.4.14 XPSF ~ POSITION FILE........... ceseee ve.5-52
5.4.15 XRBF - READ BLOCK..... tesssecnnsasseesnan 5-53
5.4.16 XRDE - READ DIRECTORY ENTRY.............. 5-54
5.4.17 XRON - READ DIRECTORY NAME.........cceuv.. 5-55
5.4.18 XRFA - READ FILE ATTRIBUTES.............. 5-56
5.4.19 XRLF - READ LINE......... N 14
5.4,20 XARNF - RENAME FILE......co0vnveennns ve...5-58
5.4.21 XROP ~ OPEN READ ONLY RANDOM FILE........ 5-59
5.4.22 XROO ~ OPEN RANDOM FILE..........c.cvnnen 5-60
5.4.23 XRST - RESET FILES.......covvivvnnannnns 5-61
5.4.24 XRWF ~ REWIND FILE.........ccovvvnuennnen 5-61
5.4.25 XSOP - OPEN SEQUENTIAL FILE....... ceerene 5-62
5.4.26 XSZF - SIZE DISK..... B . F]
5.4.27 XULF = UNLOCK FILE.......cccvverennnenees 5-64
5.4.28 XWBF = WRITE BLOCK.....ccccvvvevnrnnncnns 5-65
5.4.29 XWFA - WRITE FILE ATTRIBUTES...... srseune 5-66
5.4.30 XHLF = HRITE LINE......covvveennnnnnsnane 5-67
5.5 SUPPORT PRIMITIVES........ccvvvvrennncecnusconnscnnss 5-68
5.5.1 XCBD - CONVERT BINARY TO DECIMAL......... 5-68
5.5.2 XCBH ~ CONVERT BINARY TO HEX.............5-68
5.5.3 XCBM - CONVERT TO DECIMAL W/MESSAGE......5-69
5.5.4 XCDB - CONVERT DECIMAL TO BINARY......... 5-70

5.6.5 XGNP - GET NEXT PARAMETER.......... caeese 5-71

)

s=EatsensshEsmensns

POOS 2.4 DOCUMENTATION CHAPTER 5 PDOS AS

SEMBLY PRIMITIVES

SedeEnsrsszzssszzsz

5.1 PDOS ASSEMBLY LANGUAGE CALLS

PDOS assembly primitives are one wWord XOP instructions
which use XOP vectors 13, 14, and 15. Most calls have error
returns, while others return only status or do not return at
all. Calls with error returns continue program execution
two bytes beyond the call for a normal return, while an
error condition returns immediately after the call
instruction. This facilitates an immediate error report
primitive or a 'JMP' to an error routine.

PDOS commend primitives can be grouped according to the
register workspaces they use. Level 0 calls are referred to
as subroutines and use your program's wWorkspace for their
registers and parameters. These commands are higher level
primitives which call disk primitives within PD0S. The call
is equivalent to a Branch and Link (BL) instruction.

Level 1 primitives are for character input and output.
These primitives use the level 1 workspace contained in each
task control block. Registers R6 through R10 of this
workspace are special variables used in console wWork. None
of these primitives have an error return.

Level 2 primitives are the file manipulation routines.
They handle defining, deleting, reading, Hriting,
positioning, locking, and other such file utilities. The
level 2 workspace of the task control block is used to
transact these commands. Most of these primitives have an
error return.

Only one task can be executing a level 2 primitive at a
time. A lock flag located at)»2FE6 is set nhen a task
enters a level 2 primitive and is reset when it returns to
the caller. A1l other tasks making a level 2 call swap
while waiting for the flag to be reset.

Level 3 primitives are system subroutines and disk access
programs. These include data conversion routines as well as
disk read, write, and initialize sector programs contained
in the boot area.

A second lock flag located at >2FE8 is used wWith the disk
programs. This makes these calls autonomous and prevents
multiple commands from being sent to the disk controller.
It is the responsibility of the disk programs to clear this
flag before exiting.

Level O

Level 1

Level 2

Level 3

LI R1,FILEN JGET FILE NAME

XSoP ;OPEN FILE, ERROR?
JMP ERROR ;Y

MOV R1,aSLTN ;N, SAVE SLOT #

commends:

XAPF , XCHF , XCPY , XGML , XLDF ,XLST , XRST
XSZF ,XFFN,XBCP, XGLB, XGLM, XGLU , XRDE
XRON, XTAB, XKTB

commands:

XCBC, XGCC, XGCR, XPBC, XPCC , XPCL
XPLC,XPMC,XCLS,XPSC,XIPL

commands:

XDFL ,XDLF ,XRO0,XROP , XSOP , XNOP ,XCLF
XCFA ,XRBF , XRLF ,XHBF ,XHLF , XPSF , XRWF
XRFA,XWFA , XRNF , XLKF ,XULF

commands:

XISE,XRSE, XHSE , XRSZ, XGNP , XRTH
XHTM, XROT , XWDT ,XFTD, XCBD , XCBH
XCBM,XCDB, XUDT , XUTM, XLFN, XCTB
XSTM,XRTS

n,h.p4é?£2§é§==ﬂ======================
PODS 2.4 DOCUMENTATION CHAPTER 5 :PDOS/ASSEMBLY PRIMITIVES oAGE 5-4
S,

(5.1 PDOS ASSEMBLY LANGUAGE CALLS continued)

Levé) 4 primitives use the clock workspace. They are for Level 4 commands:
testing and setting events, suspending end locking tasks,
and for swapping and returning errors. _ XSHP ,XSHR ,XSER,XERS , XERR , XEXT

XSEF ,XSUL ,XTEF ,XLKT ,XULT ,XGTM
These primitive levels are summarized as follows:

LEVEL: LV O Lv 1 Lv 2 Lvs3 Lv 4
XOP: XOP 13 XOP 13 XOP 14 XOP 15 XOP 15
HORKSPACE : BL LM L2KW L34 = CLKHS

CALL: XAPF XCBC XDFL* XISE+ .. XSWP
XCHF XGCC XDLF* XRSE+ XSHR
XCPY XGCR XROO* XHSE+ XSER
XGHL XPBC XROP* XRSZ+ XERS
XLOF XPCC XS0P* XGNP XERR
XLST XPCL XNOP* XRTM XEXT
XRST XPLC XCLF* XWTM XSEF
XSZF XPMC XCFAx XRDT © XSul
XFFN XCLS XRBF* XWDT XTEF
XBCP XPSC XRLF* XFTD XLKT
XGLB XIPL XHBF* XCBD XULT

XGLM XWLF* XCBH.
X6LU XPSF* XCBM
XRDE XRWF* XCDB
XRON XRFA* XUDT
XTAB XWFA* XUTM
XKTB XRNF* XLFN
XFFE XLKF* XCTB
R6=CNT XULF* XSTM)
R7=PRT XRTS
RB8=IMP
R10=UNT

* Level 2 lock
+ Level 3 lock

TMS9900 registers are designated by RO through R15. Registers = RO-R15
Control characters appeer as either an up arrow (*)

preceding a alphabetic character or as two hexadecimal . *C =03
characters between angle brackets. Special characters such LF> =)0A

as carriage return, line feed, or escape have special <CR> = >0D
abbreviations in angle brackets. {esc) = »1B

ANl calls return to the next word following the XOP, except

where an error return is noted in the format. A few special XAPF
calls also set the status register upon return. Such calls error <== Error return
allon the user to select the type of jump required to handle cens == Normal return

the results.

&

- T ——

PDOS 2.4 DOCUMENTATION

: CHA#IEh‘S PDOS ASSEMBLY PRIMITIVES PAGE 5-5

SDz==3; o

5.2 SYSTEM CALLS

5.2.1 XCTB — CREATE TASK BLOCK

Mnemonic: XCTB

Value: »2FDD

Format: XCTB
error

Registers: IN RO = Task size
(R1) = Task command line pointer

R2 = Task time
R3 = I1/0 port
R4 = Optional low memory pointer
R5 = Optional bhigh memory pointer

OUT RO = Spawned- task # - -

The CREATE TASK primitive places a new ‘task entry in the
PDOS task 1list. Memory for the new task comes from either
the parent task or the system memory bit mep. Register RO
controls the mode of the new task as well as the task size.

If register RO is positive, then the first available
contiguous memory block equal to RO (in K bytes) is
allocated to the new task. This memory comes from any page
or map, but must be contiguous. If there is not a block big
enough, then the upper memory of the parent task is
allocated to the new task. The parent task's memory is then
reduced by RO x 1K bytes. Register R1 points to the new
task command line. If R1=0, then the monitor is invoked.

If register RO is zero, then registers R4 and R5 specify
the new task's memory 1limits in the current map or page.
Register R1 specifies the task's starting PC.

1f register RO=-1, then registers R4 and RS specify the new
task's memory limits in the current map or page. Register
R1 points to the new task commend line. (If RO=0, then the
monitor is invoked.)

1f register RO¢<-1, then the complement of register RO
specifies the new page, R4 and RS specify the new task's
memory limits, and R1 points to the new task command line.

SETO RO ;USE CURRENT PAGE
LI R1,FILEN ;GET FILE NAME

LI R2,1 ;1 TIME PERIOD

CLR R3 ;USE PHANTOM PORT
MOV 3>1DC(9),R4 ;GET EUM

MOV R4,RS5 ;SET END

Al R4,->0400 ;SET BEGINNING (1K)
XCT8 ;CREATE TASK

JMP ERROR ,PROBLEM
MOV RO, TASKN ,SAVE TASK NUMBER

If RO>0 then: RO=Task size
(R1)=Task command line
(0=Moni tor)

If RO=0 then: R1=Program PC
R4-R5=New task memory limits
of current map or page

If RO=-1 then: (R1)=Task command line
(0=Moni tor)
R4-R5=Nen task memory limits
of current map or page

If RO<-1 then: -RO-1=Nen task memory page
(R1)=Task command 1ine
(0=Moni tor)
R4-R5=Nen task memory limits
of current map or page

===ééﬁ==é==========s=;g========
PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-6
szmzzzozass

(5.2.1 XCTB - CREATE TASK BLOCK continued)

The commend line is transferred to the spawned progrem via
a system message buffer. The maximum length of a command
line is 50 characters. When the task is scheduled for the
first time, the message buffers are searched for a command.
Messages With a source task equal to -1 are considered
commands and moved to the task's monitor buffer. The task
CLI then processes the line. If no command message is
found, then the monitor is called directly.

Register R2 specifies the number of clock tics the new task R2=Clock tics/time slice
executes each time it 1is scheduled. This value is in
1/125ths of a second but can be changed by the BFIX utility.

Register R3 specifies the 1/0 port to be used by the new R3=1/0 port

task. If register R3 is positive, then the port is

available for both input and output. If register R3 is 14 R3=0D, then phantom port (no 1/0)
negative, then the port is used only for output. If

register R3 is zero, then no port is assigned. Only one 1f R3O0, then port is used for 1/0

task may be assigned to any one input port while many tasks

may be assigned to an output port. Hence, a port is 1f R3¢0, then port is used for output only

allocated for input only if it is available. An invalid
port assignment does not result in an error. '

Finally, the spawned task's number is returned in register
RO to the parent task. This can be used later to test task
status or to ki1l the task. '

Possible Errors:

72
73

Too many tasks
Not enough memory

)

A

PDOS 2.4 DOCUMENTATION CHAPTER & PDOS ASSEMBLY PRIMITIVES

PAGE 5-7

5.2.2 XERR — MONITOR ERROR CALL

Mnemonic: XERR
Value: Y2FC4
Format: XERR

Registers:' IN RO = Error code

The MONITOR ERROR CALL primitive returns the .§55k to the
PDOS monitor and passes an error code in register RO. PDOS
prints 'PDOS ERR', followed by the decimal error number.

Possible Errors: None

5.2.3 XEXT - EXIT TO MONITOR

Mnemonic: XEXT
Value: Y2FC5
Format: XEXT

(exits to monitor)
The EXIT TO MONITOR primitive returns a user péqgfam to the
PDOS monitor. PDOS replies Wwith a <LF», <CR>, <bell), and a
'." prompt. The latter two characters are changed by the
BFIX utility.

Possible Errors: None

XRSE
XERR

LI RO,56
XERR

XCLF
XERR
XEXT

;READ SECTOR
;ERROR

;RETURN EOF ERROR

;CLOSE FILE, ERROR?
:Y, DO ERROR CALL
;N, RETURN TO MONITOR

L

PDOS 2.4 DOCUMENTATION _CHAPTER 5 PDOS ASSEMBLY PRIMITIVES
ITTEREERETE

PAGE 5-8

5.2.4 XFTD — FIX TIME & DATE

Mnemonic: XFTD
Value: Y2FD5
Format: XFTD XFTO
MOV RO,3TSTP
Registers: OUT RO = (Hours * 256) + Minutes MOV R1,3TSTP+2
R1 = ((Year * 16) + Month) * 32 + Day cees
The FIX TIME & DATE primitive returns a tWo word encoded TSTP DATA 0,0
time and date generated from the system timers. The ’
resultant codes include month, day, year, hours, and
minutes. The ordinal codes can be sorted and used as inputs
to the UNPACK DATE and UNPACK TIME routines.
(See 5.2.19 UNPACK DATE and 5.2.21 UNPACK TIME.)
Possible Errors: None
. 5.2.5 XGML — GET MEMORY LIMITS
Mnemonic: XGML
Value: Y2F43
Format: XGML START XGML
LI RO,ENDP
Registers: OUT RO = Beginning User Storage (BUS)
R1 = End User Memory (EUM) START2 CLR *RO+
R9 = Task control block C RO,R1
JL START2

*Uses registers RO,R1,R9,R11 of calling workspace

The GET MEMORY LIMITS subroutine returns the user task
memory limits. These limits are defined as the first usable
location after the task control block (>200 beyond register
R9) and the end of the user task memory. The task may use
up to but not including the upper memory limit.

Register RO is returned pointing to the beginning of user
storage and register R1 to the end of user storage.

Possible Errors: None

;GET TIME STAMP
;SAVE TIME
;SAVE DATE

,TIME STAMP SAVE

;GET MEMORY LIMITS
;GET POINTER

JCLEAR MEMORY
;DONE?
;N

szz= EEnEsIassngEaEsns

POOS 2.4 DOCUMENTATION ' CHAPTER 5. PDOS ASSEMBLY PRIMITIVES PAGE 5-9
sesommmsmssssgmeeszsc=s=ss=s=ss=s=z===zz=ssssossoosoozssssss=soomoozoos
5.2.6 XGTM - GET TASK MESSAGE
Mnemonic: XGTM
Value: Y2FCB
Format: XGTM LooP LI R1,BUFFER ,GET BUFFER
EQ = Message XGTM ;LOOK FOR MESSAGE
JNE NONE
Registers: IN (R1) = 51 character buffer XPCL JMESSAGE, CRLF
OUT RO = Source task # XPLC ;OUTPUT LINE
‘ JMP LOOP ;LOOK AGAIN
The GET TASK MESSAGE primitive searches the PDOS messege *
buffers for a message wWith a destination equal to the NONE
current task number. If a message is found, it is moved to
the buffer pointed to by register R1, the message buffer is BUFFER BSS 51 ;MESSAGE BUFFER

released, and the status is set EQUAL. If no message is
found, status is returned NE.

The buffer must to at least 51 bytes in length. Only the
first encountered message 1is returned. Messages are data

independent and pass any type of binary data.

PDOS 2.4 DOCUMENTATION

CHAPTER 6 PDOS AGSEMBLY PRIMITIVES

5.2.7 XISE - INIT SECTOR

Mnemonic: XISE
Value: »2FCC
Format: X1SE
error
Registers: IN RO = Disk #

e S L

PAGE 5-10

R1 = Logical sector # LOoP
(R2) = Buffer address

The INIT SECTOR primitive

system-defined,

hardware-dependent progrem which wWrites 256 bytes of data .
from a buffer (R2) to a logical sector number (R1) on disk

(RO). This routine
initialization and

primitive for all sectors except 0.

for the PDOS ID code.

is meant only to be used for disk
is equivalent to the HWRITE
Sector 0 is not checked

SECTOR

X1SEOO
XISE branches to location >F808 of the boot EPROMs. You
may substitute other routines to handle different devices
such as high speed disks or bubble memories. The call exits X1SE20
Wwith a INCT R14 and RTHP for a normal return. An error *
return is made by moving the error number to register RO of XISERT
the calling routine (*R13) end doing a RTWP. In either
case, the level 3 lock at location >2FE8 must be cleared! x
XISERR

See APPENDIX _ PDOS BOOT:SR.

Possible Errors:

Disk erraors

LI RO,DISKN ;GET DISK #
CLR R1 ;START AT SECTOR 0
LI R2,BUFFER ,GET BUFFER PTR
XISE JHRITE TO DISK
XERR ,ERROR
. INC R1 JMOVE TO NEXT
€1 R1,018KkZ ,DONE?
JL LOoP ;N
JROUTINE ENTRY
INCT R14 sNORMAL RETURN
CLR @>2FEB JCLEAR LEVEL 3 LOCK
RTHP JRETURN
MOV RO,*R13 ;ERROR RETURN
JMP XISERT ;RETURN

-

PDOS 2.4 DOCUMENTATION

: ===s=zsusssosses
CHAPTER 6 PDOS ASSEMBLY PRIMITIVES

smzengs

PAGE 5-11

5.2.8 XKTB — KILL TASK BLOCK

Mnemonic: XKTB
Value: Y2F50
Format: XKTB
error
Registers: IN RO = Task #

*Uses registers R0O-R3,R9,R11

The KILL TASK BLOCK primitive removes a task from the PDOS
task list and optionally returns the task's memory to the
system memory bit map. Only the current task or a task
spanned by the current task can be killed. Task O cannot be
killed.

The task number is specified in register RO.
RO=0, then the current task is killed and
deallocated in the system memory bit map.

If register
its memory

If RO>0, then the selected task is killed and its memory
deallocated. If RO<O, then task number ABS(RO) is killed
but its memory is not deallocated in the memory bit map.

The kill process includes releasing the input port assigned
to the task, and closing all files associated with the task.
Possible Errors:

74 = No such task
76 = Task locked

PREND SETO RO JKILL SELF
XKTB ;CALL KILL TASK
XERR

If RO=0, then kill self & deallocate
memory

If RO>0, then kill task RO & deallocate
memory

I1f RO<O, then kill task ABS(RO) & do not
deallocate memory

snEsssEsTs

PDOS 2.4 DOCUMENTATION

5.2.9 XIKT - LOCK TASK

Mnemonic: XLKT
Value: Y2FC9
Format: XLKT

Registers: None

The LOCK TASK primitive locks a task in the run state by
setting to nonzero the swap lock variable at memory location

>2FEA. This allows only user interrupt routines (not tasks)
and the current task to receive CPU cycles. The task

remains locked until an UNLOCK TASK (XULT) is executed.

XLKT waits until a1l locks (Level 2 and Level 3 1locks) are '

cleared before the task is locked.

Possible Errors: None

5.2.10 XRDT — READ DATE

Mnemonic: XROT
Value: Y2FD3
Format: XROT

Registers: OUT (R1) = MN/DY/YR string

The READ DATE primitive returns the current system date as
a nine character string. The format is 'MN/DY/YR' followed
by a null. Register R1 points to the string in the monitor
work buffer.

Possible Errors: None

CHAPTER 6 PDOS'ASSEMBLY PRIMITIVES

EEERERRRSSRSEIIRINIRRSERS

PAGE 5-12

HALT

MES1

XLKT

SB0 20

T8 -6

JNE WALT
SBZ 20
XULT

XPMC

DATA MES1
XROT
XPLC

TEXT 'DATE='
BYTE O

,LOCK TASK
,START CRITICAL PROCESS

,0K?

;N

)Y, STOP
JUNLOCK TASK

;OUTPUT PROMPT

;GET DATE
;OUTPUT TO SCREEN

STRWRWIDEST

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-13
2 —

5.2,.11 XRSE - READ SECTOR

Mnemonic: XRSE
Value: »2FCD
Format: XRSE CLR RO ;SELECT DISK #0
error CLR R1 JREAD HEADER
LI R2,BUFFER JGET BUFFER
Registers: IN RO = Disk # XRSE JREAD INTO BUFFER
R1 = Sector # XERR ;ERROR
(R2) = Buffer pointer .
The READ SECTOR primitive is a system-defined, BUFFER BSS 256 ,BUFFER
hardware-dependent program which reads 256 bytes of data
into a memory buffer pointed to by register R2. The disk is
selected by register RO. Register R1 specifies the logical
sector number to be read.
XRSEOO ;ROUTINE ENTRY
XRSE branches to location >F800 of the boot EPROMs. You
may substitute other routines to handle different devices
such as high speed disks or bubble memories. The call exits XRSE20 INCT R14 ;NORMAL RETURN
with a INCT R14 and RTWP for a normal return. An error *
return is made by moving the error number to register RO of XRSERT CLR 9>2FE8 ;CLEAR LEVEL 3 LOCK
the calling routine (*R13) and doing a RTWP. In either RTWP JRETURN
case, the level 3 lock at location >2FE8 must be cleared! *
XRSERR MOV RO,*R13 ;ERROR RETURN
See APPENDIX _ PDOS BOOT:SR. JMP XRSERT JRETURN

Possible Errors:

Disk errors

S R S R R R R S S S S S S S SRS T I IR IS SS TSI ST IR
PDOS 2.4 DOCUMENTATION CHAPTER -5:POOS® ASSEMBLY PRIMITIVES : PAGE 5-14

5.2.12 XRTM -~ READ TIME

Mnemonic: XRTM
Value: 2FD1
Format: XRTM GETD XPMC +OUTPUT PROMPT
DATA MES1
Registers: OUT (R1) = HR:MN:SC string XRTM JGET TIME
XPLC ,OUTPUT TO SCREEN
The READ TIME primitive returns the current time as an nine
cheracter string. The format is 'HR:MN:SC' followed by a
null. Register R1 points to the string in the monitor work MES1 TEXT ‘TIME='
buffer. , : BYTE O
Possible Errors: None
5.,2.13 XRTS - READ TASK STATUS
Mnemonic: XRTS SETO RO ;USE CURRENT PAGE
Value: Y2FOF LI R1,FILEN JGET FILE NAME
LI R2,1 ;1 TIME PERIOD
Format: XRTS CLR R3 ;USE PHANTOM PORT
MOV @>1DC(9) ,R4 ;GET EUM
Registers: IN RO = Task # MOV R4,RE ;SET END
OUT R1 = Task time ' Al R4,->0400 ;SET BEGINNING (1K)
LT = Suspended XCTB ,CREATE TASK
EQ = No task JMP ERROR ,PROBLEM
GT = Executing x .
LooP XSHP JSHAP WHILE WAITING
The READ TASK STATUS primitive returns in register R1 and “XRTS ,FOR TASK TO COMPLETE
the status register the time parameter of the task specified JNE LOOP
by register RO. The time reflects the execution mode of the NEG RO JKILL TASK W/0 FREEING
task. If R1 returns zero, then the task is not in the task XKTB JMEMORY
list. I1f R1 returns a value greater than zero, then the JMP ERROR

task is in the run state (executing). If R1 returns a

negative value, then the task is suspended pending event

-(RY).

If R1=0, then not in task list
The task number is returned from the CREATE TASK BLOCK

(XCTB) primitive. . 1f R1O, then task executing

1f R1K0, then task suspended on event -R1
Possible Errors: . None

&

TuIscEENlisssns —=====================z======

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-15

s=sasseshgremsonzones

5.2.14 XSEF — SET EVENT FLAG

Mnemonic: XSEF
Value: Y2FC6
Format: XSEF

Registers: IN R1 = Event

The SET EVENT FLAG primitive sets or resets an event flag
bit. The event number is specified in register R1 and is
modulo 128. I1f the content of register R1 is positive, the
event bit is set to 1. Otherwise, the bit is reset to 0. A
hardware event can be simulated by the XSEF primitive when
an event number of 1 through 16 is used.

Events are summarized as follows:

1-15 = Hardware events
16-63 = Software events
64-94 = Software resetting events
85-103 = Input port events
104-111 = Output complete events
112 = 1/5 second event
113 = 1 second event
114 = 10 second event
116 = 20 second event
116 = $TTA active
117 = $LPT active
118-125 = To be assigned
126 = Error message disable
127 = System utility

Possible Errors: None

LI R1,30 :SET EVENT 30
XSEF ;SET EVENT

" LI R1,-35 sRESET EVENT 35
XSEF ;SET EVENT

4 types of event flags:

1-15 = Hardware
16-63 = Sof tnare
64-94 = Software resetting
95-127 = System

SESsEsNEsEoss

PDOS 2.4 DOCUMENTATION

 CHAPTER 5PO0S, ASSEHBLY FRINLTIVES

5.2.15 XSTM ~ SEND TASK MESSAGE

Mnemonic: XSTM
Value: »2FDE
Format: XSTM
error
Registers: IN RO = Task #

PAGE 5-16
ERROR LI R1,ERRM ;ERROR, RETURN MESSAGE
SETO RO ; TO PARENT TASK
XSTH ;SEND MESSAGE
XERR ;PROBLEM
YEXT ;DONE

(R1) = Message string

The SEND TASK MESSAGE primitive places a 50 character
message into the PDOS system message buffer. The message is
data independent and is pointed to by register R1.

Register RO specifies the destination of the message. If
register RO equals -1, end there is no input port (phantom
port), then the message is sent to the parent task.
Othernwise, register RO specifies the destination task.

The ability to direct a message to @ parent task is very
useful in background tasking. An assembler need not know
from which task it was spawned and can merely direct any
diagnostics to the parent task.

1f the destination task number equals -1, the task message
is moved to the monitor input buffer and persed as a command

line. This feature is used by the CREATE TASK BLOCK
primitive to spann a new task.

Possible Errors:

78 = Message buffer full

RO = -1 sends message to parent task

(ﬁ'k

zosgRsnRes

POOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-17
---------- ' TR UG R
5.2.16 XSUI — SUSPEND UNTIL INTERRUPT
Mnemonic: XSul
Value: Y2FC?
Format: XSul LI R1,5 JSUSPEND ON LEVEL 5
XSUL ,SUSPEND TASK
Registers: IN R1 = Event LI R12,>0180 ,POINT TO AUX PORT
SBO 18 ,ACKNOWLEDGE INTERRUPT

The SUSPEND UNTIL INTERRUPT primitive suspends the user
task until the event specified in register R1 occurs. There
are 127 events defined in PDOS. The first 15 (1-15) are
hardware events while events 16 through 127 are software
events. (Event O is ignored.) The event number in register
R1 is modulo 128.

A suspended task does not receive any CPU cycles until the
event occurs. When the event bit is set, the task begins
executing at the next instruction after the XSUL call. The
task is immedietely scheduled and begins executing for
hardware event interrupts. A1l others are scheduled during
the normal swapping functions of PDOS.

A suspended task is indicated in the LIST TASK (LT) command
by a minus event number being listed for the task time
parameter. MWhen the event occurs, the original time
parameter is restored.

Hardware events are enabled by overwriting the appropriate
interrupt vector with the Workspace and address of the event
processor. The interrupt mask bit on the 9901 is set to
one, enabling the interrupt. However, you must ensure that
the system interrupt mask is high enough to allow the
interrupt to occur. Software events are indicated by a
single bit being set or reset in an event list.

1f more than one task is suspended on the same event, only
the lowest numbered task 1is rescheduled for all hardware
events. For software events, however, all tasks suspended
on the event are rescheduled until the event is reset.

Once a hardware interrupt occurs, PDOS disables further
interrupts on the event level at the system TMS9901 by
setting the interrupt mask bit to zero. The system
interrupt mask 1is not affected. Software event flags are
not reset and must be processed by the event routine.

Possible Errors: None

LT
TASK

*0/0
1/0
2/0

PAGE TIME 8 HS PC SR

0 3 Y42A2 >441C >0654 >D4CF ...
0 -30 >4AAZ >4A82 >1040 >D0CF ...
0 -5 >52AZ »5282 >292E >C40F ...

New interrupt vector
Interrupt enabled at TMS9901

Interrupt disabled at TMS9301

Software event flag bit NOT reset

== TRREISRasssssssRsssERtanys

POOS 2.4 DOCUMENTATION CHAPTER § POOS ASSEMBLY PRIMITIVES

5.2.17 XSWP — SWAP TO NEXT TASK

Mnemonic: XSHP
Value: ¥2FCO
Format: XSWP

The SWAP TO NEXT TASK primitive relinquishes control to the
next task in the system task list. This should be used by
any routine waiting on 1/0 or other counters.

Possible Errors: None

5.2.18 XTEF — TEST EVENT FLAG

Mnemonic: XTEF
value: Y2FC8
Format: XTEF

Registers: IN R1 = Event

The TEST EVENT FLAG primitive sets the 9900 status word
EQUAL or NOT-EQUAL depending upon the zero or nonzero state
of the specified event flag. The flag is not altered by
this primitive.

The event number is specified in register R1 and is modulo

128. The XTEF primitive is meaningful for software events
only (16-127).

Possible Errors: None

SSsSSssSssIsIzemsmNmNssc

PAGE 5-18

LOOP TB5
JEQ LOOPO2
XSHP
JMP LOOP
*
L00PO2
LI R1,30
XTEF
JEQ EVENT

;CONDITION MET?
4
;N, SHAP WHILE WAITING

JEVENT 30

;TEST EVENT FLAG
JEVENT = .TRUE.
JEVENT = .FALSE.

S

POOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-19
2 =

6"*

$.2.19 XUDT — UNPACK DATE

Mnemonic: Xuot
Value: »2FDA
Format: XuoT XFTD ;FIX TIME & DATE
XuDT ;UNPACK DATE
Registers: IN R1 = (Year * 16 + Month) * 32 + Day XPLC ;PRINT 'MN/DY/YR'
OUT (R1) = MN/DY/YR
The UNPACK DATE primitive converts a one word encoded date
into an eight character string terminated by a null (9
characters). Register R1 contains the encoded date and
returns with a pointer to the formatted string. The output
of the FIX TIME & DATE routine is valid input to this
routine.
(See 5.2.4 FIX TIME & DATE.)
Possible Errors: None
5.2.20 XULT — UNLOCK TASK
Mnemonic: XULT
vValue: Y2FCA
Format: XULT LOOP 5 ;CONDITION MET?
JNE LOOP ;N, HAIT
The UNLOCK TASK primitive unlocks a locked task by clearing SBZ 10)Y, RESET
the swap lock veriable at memory location >2FEA. This XULT ;UNLOCK TASK NOW

allows other tasks to be scheduled and receive CPU time.

(See 5.2.9 XLKT - LOCK TASK.)

Possible Errors: None

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-20
SRS S D e P e T e S e

5.2.21 XUTM - UNPACK TIME

Mnemonic: XUTH

Value: »2FDB
Format: XUTM ' XFTD JGET SYSTEM TIME
MOV RO,R1
Registers: IN R1 = (Hours * 266) + Minutes XUTM JCONVERT TO STRING
XPLC ;PRINT TIME
OUT (R1) = HR:MN

The UNPACK TIME primitive converts a one word encoded date

into a 6 character string terminated by a null. Register R1

contains the encoded time and returns with a pointer to the

formatted string. The output of the FIX TIME & DATE routine

is valid input to this routine.

(See 5.2.4 FIX TIME & DATE.)

Possible Errors: None

5.2.22 XWDT - WRITE DATE

Mnemonic: XHDT
Value: Y2FD4
Format: XWDT LI RO,12 JSET DATE TO 12/25/80
LI R1,25
Registers: IN RO = Month LI R2,80
R1 = Day XWOT ,SET DATE
R2 = Year oo

The HRITE DATE primitive sets the system date counters.
Register RO specifies the month and ranges from 1 to 12.
Register R1 specifies the day of month and ranges from 1 to
31. Register R2 is the last 2 digits of the year.

Possible Errors: None

SSsszEszsssssss:

PDOS 2.4 DOCUMENTATION CHAPTER -5 PDOS ASSEMBLY PRIMITIVES PAGE 5-21
===sss=sss==Ess
5.2.23 XWSE — WRITE SECTOR
Mnemonic: XWSE
Value: Y2FCE
Format: XWSE CLR RO JHWRITE TO DISK #0
error LI R1,10 ;WRITE TO SECTOR #10
LI R2,BUFFER JGET BUFFER ADDRESS
Registers: IN RO = Disk # XWSE - JHRITE
R1 = Sector # XERR ,PROBLEM
(R2) = Buffer address
The HWRITE SECTOR primitive 1is a system-defined, BUFFER BSS.256 ;DATA BUFFER
hardware-dependent program which writes 256 bytes of date
from a buffer, pointed to by register R2, to a 1logical
sector and disk device as specified by registers R1 and RO
respectively.
XHSEDO JHRITE SECTOR ENTRY
XHSE branches to location >F804 of the boot EPROMs. You
may substitute other routines to handle different devices
such as high speed disks or bubble memories. The call exits XWSE20 INCT R14 ;NORMAL RETURN
with @ INCT R14 and RTWP for a normal return. An error *
return is made by passing the error number to register RO of XHSERT CLR a>2FE8 ;CLEAR LEVEL 3 LOCK
the calling routine workspace (*R13) and doing a RTWP, In RTKP JRETURN
either case, the level 3 lock at 1location »>2FE8 must be *
cleared upon exit! XWSERR MOV RO,*R413 JERROR
JMP XWSERT JRETURN

See APPENDIX _ PDOS BOOT:SR.

Possible Errors:

Disk errors

PDOS 2.4 DOCUMENTATION

SsssmssrssssoocrrorsxmsmmmsgtneosxToss
CHAPTER 6 PDOS. ASSEMBLY PRIMITIVES
SEEszssEss

PAGE 5-22

5.2.24 XWIM - WRITE TIME

Mnemonic:
Value:

Format:

Registers:

IN

RO = Hours
R1 = Minutes
R2 = Seconds

The HWRITE TIME primitive sets the system clock time.
Register RO specifies the hour and ranges from O to 23.
Register R1 specifies the minutes and register R2, the
seconds. Both range from 0 to 69.

Possible Errors:

None

LI RO,23
L1 R1,59
Ll R2,59
XWTM

JSET TIME TO 23:59:59

;SET SYSTEM TIME

=5

POOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-23
== k 2 ==
5.3 CONSOLE I/O PRIMITIVES
5.3.1 XBCP - BAUD CONSOLE PORT
Mnemonic: XBCP
Value: Y2FA9
Format: XBCP START LI R1,>320 +ASSIGN CRU BASE
NE = error LI R5,3 . TO PORT 3
LI R6,19200 7 WITH 19.2K BAUD
Registers: IN R1 = CRU base XBCP ,BAUD PORT
RB = Console Port # ceee
R6 = Baud rate
*Uses registers RO,R1,R5,R6,R9,R11,R12 RS = Part = 1 = >0080 TM3900/101MA main port
) 2 = 0180 TM9800/101MA aux port
The BAUD CONSOLE PORT subroutine initializes any one of the 3 = >0EOD ER3232 sel #1 page #0
eight PDOS 1/0 ports and binds a physical TMS3902 UART to a 4 = >0A00 ER3232 sel #3 page 80
character buffer. The subroutine sets the 9802 character 5 = >0A40 ER3232 sel #3 page #1
format, receiver and transmitter baud rates, and ensbles 6 = >0A80 £R3232 sel #3 page #2
receiver interrupts. 7 = »0ACO ER3232 sel #3 page #3
8 = »0BOO ER3232 sel #3 page #4
Register RS selects the console port and ranges from 1 to
8. The system variable ITBCRU, located at address >0096 R6 = Baud = 0 = 19200 baud
(>00B6 for 102), points to the input CRU base table. This 1 = 9600 baud
table binds a physical 9902 UART to a port character buffer 2 = 4800 baud
and is generated burning PDOS initialization. Entries in 3 = 2400 baud
this table are changed by the BFIX utility or by a nonzero 4 = 1200 baud
register R1. 5 = 600 baud
6 = 300 baud
The TMS9902 UART's control register 1is initialized to 1 7 = 110 baud
start bit, 7 bit character, even parity, and 2 stop bits (11
bits). The receiver and transmitter baud rates are 9802 initialized for 11 bits:
initialized to the same value according to register R6. 1 start bit
Register R6 ranges from 0 to 7 or the corresponding baud 7 bit character
rates of 19200, 9600, 4800, 2400, 1200, 600, 300, or 110. 1 even parity
Either parameter is acceptable. 2 stop bits

If RS is negative, then the associated CRU base address is
stored in the UNLIT 2 (U2C(9)) veriable. The port is bound
to any CRU base in register R1.

Interrupts are enabled for input only (SBO 18).

Possible Errors:

64 = Invalid port or baud rate

EussInstsens

POOS 2.4 DOCUMENTATION CHAPTER 5-PDOS. ASSEMBLY PRIMITIVES . PAGE 5-24
zzz: ; SFEERIEIRSIIRASREFSASARSsEREEsEoRsTsssszas
S Pty
5.3.2 XCBC - CHECK FOR BREAK CHARACTER
Mnemonic: XCBC
Value: Y2F54
Format: XCBC
Jd ~C XCBC ;BREAK?
JLT esc JL CONTC ;Y, ~C
JEQ nothing JLT ESCAP Y, ESC
JMP LOOP sN, CONTINUE
The CHECK FBR BREAK CHARACTER primitive checks :the current *
user input port break flag to see if a break character has CONTC LI RO,'~C' ;CONTROL C, ECHO '~C'
been entered. The PDOS break characters are control C ()03) XPCC ;OUTPUT
and the escape key (>18B). = JMP BEGIN ;START AGAIN
" .
A control C sets the break flag positive, while an <(escape’ ESCAP LI R1,BRKM. ;OUTPUT '»>BREAK'
cheracter sets the flag negative. The XCBC command samples XPMC ;OUTPUT
and clears this flag. "‘The condition of the break +flag 1is < XEXT. . JEXLT TO PDOS
returned in the status regvster *
' o BYTE >0A,>0D sBREAK MESSAGE

A LOW cindition’ indfcates o ~C has been entersd. The bresk -
flag ‘and - the :input. buffer are cleared. A1l subsequent ...

characters: entereu #f4Er: the “C and before the XCBC call are. .

dropped.:*

A LESS THAN condition indicates an <escape)> cheracter has
been entered. Only the break flag is cleared and.not the
input buffer. Thus, the <escape) character remains in the
buffer.

The ~C chéracter is interpreted as a hard break and is used
to terminate command operations. The <escape) character is
a soft break and remains in the input buffer, even though

the break flag is cleared by the XCBC command. (This allows.

an editor to use the escape key for specm] functions or
command termination.) e

Possible Errors: None

. TEXT_*»>BREAK’
. BYTE D

i

PDOS 2.4 DOCUMENTATION

CHAPTER 5 PO0S ASSEMBLY PRIMITIVES

PAGE 5-25

- e ——

5.3.3 XCLS - CLEAR SCREEN

Mnemonic: XCLS
Value: Y2F5C

Format: XCLS

The CLEAR SCREEN primitive clears the console screen, homes
the cursor, and clears the column counter. This function is
adapted to the type of console terminals used in the PDOS
system.

The character sequence to clear the screen 1is located in
the task control block at d>1EA(9). The clear screen
variable 1s initialized from memory location Y0080 when the
task 1is created. It is altered after the task is executing
by the TERMINAL utility.

The CLEAR SCREEN primitive outputs up to four cheracters:
one or tWo characters, an escepe followed by a character, or
an escape, character, escape, and a final character. The
one word format allows for two characters. The parity bits
cause the escape character to precede each character.

The BFIX utility configures location >0090 for the default
codes.

XCLS JCLEAR SCREEN
XPHMC . ;OUTPUT MESSAGE
DATA MESO1

CSC(8) = E111 1111 E222 2222
A\ ANANY .
W\ AR
\\ AYAY
W\ \
W\ \
\\ 1st character

PR

\ 1st escape

2nd character
2nd escape

PDOS 2.4 DOCUHENTATIdN CHAPTER 6 PDOS ASSEMBLY PFRIMITIVES PAGE 5-26
zzzgzzzzsosizzzessaségzaesoas

5.3.4 XGCC - GET CONSOLE CHARACTER CONDITIONAL

Mnemonic: XGCC
Value: »2F55
Format: XGCC .
EQ =) No character XGCC ;CHARACTER?
L= 4C JEQ CONT sN, CONTINUE
LT =) Esc JL QuIT)Y, ~C, QuIT
JLT NEXT ;Y, ESC, GOTO NEXT
Registers: OUT RO = Character*256 *
HALT XGCR)Y, HALIT CHARACTER
The GET CONSOLE CHARACTER CONDITIONAL primitive checks the JMP CONT

interrupt driven input cheracter buffer and returns the next
character in the left byte of register RO. The right byte
is cleared.

1f the buffer is empty, the EQUAL status bit is set. If
the character is a control C (>03), then the break flag and
input buffer are cleared, and the status is returned LONW.
If the character is the escape character (>1B), then the
break flag is cleared and the status is returned LESS THAN.

If no special character is encountered, the character is
returned in register RO and the status set HIGH and GREATER
THAN.)

1f no port has been assigned for input (ie. port 0 or

phantom port), then the routine always returns an EQUAL
status.

Possible Errors: None

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-27

____________________ o o o .

5.3.5 XGCR — GET CONSOLE CHARACTER

Mnemonic: XGCR
Value: Y2F56
Format: XGCR LOOP XGCR ,GET CHARACTER
L = +C JL QuIT ,~C, DONE
LT =) Esc JLT NEXT ;CONTINUE
CI RO,'0'*256 ,;NUMBER?
Registers: OUT RO = Character*256 ceen

The GET CONSOLE CHARACTER primitive checks for a character
from first, the input message pointer (d)>18A(8)), second,
the assigned input file (@>1E0(9)), and then finally, the
interrupt driven input character buffer. If a character is
ready, it is returned in the left byte of RO and the right
byte is cleared.

If there is no 1input message, no assigned console port
character, and the interrupt buffer is empty, the task is
suspended pending a character interrupt.

The status is returned LOW and the breek flag cleared if
the returned character is a control C (>03). The input
buffer is also cleared. Thus, all characters entered after
the ~C and before the XGCR call are dropped.

The status is returned LESS THAN and the break flag cleared
if the returned character is the <escape> character (>1B).

For all other characters, the status is returned HIGH and
GREATER THAN. The break flag is not affected.

1f no port has been assigned for input, (ie. port 0 or

phantom port), then the task is suspended indefinitely on
event 95.

Possible Errors: None

PDOS 2.4 DOCUMENTATION

CHAPTER i PDOS ASSEMBLY PRIMITIVES

PAGE 5-28

e e
5.3.6 XGLB - GET LINE IN BUFFER
Mnemonic: XGLB
Value: Y2F4A
Format: XGLB OPEN
: " JLT XXXX {optional)
Registers:iﬁlﬂf(hZJ ;_Buffgr :
OUT (R1) = Input string
(RS) = Task control block *
EQ = Carriage return only OPEN2
L = Control C
*Uses registers R0O-R3,R11 of calling workspace
OPEN4
The GET LINE IN BUFFER subroutine gets a character 1line
into a buffer pointed to by register R2. A XGCR primitive
is used by XGLB and hence characters come from a memory OPERR
message, a file, or the task console port. The line is
delimited by-a <CR>. The status returns EQUAL if only a *
(CR> 1is entered. Register R1 is returned with a pointer to OPEN10
the first cheracter.
The buffer need only be 80 characters in length since XGLB MESO1
limits the number of characters to 78. Al1 control
characters except <rubout>, <escape>, *C, and <(CR> are
ignored. BUF

If an cescape) is entered, the task exits to the PDOS

monitor unless a 'JLT' instruction immediately follows the
XGLB call. If such is the case, then XGLB returns with
status set at ‘LT'.

Possible Errors: None

XPMC

DATA MESO1
L1 RZ,BUF
XGLB

JLT OPEN

JEQ OPEN10

XsoP
JMP OPEN4

CI RO,53
JNE OPERR
XDFL
XERR
JMP OPEN2

BYTE >0A,>0D
TEXT 'FILE='
BYTE 0
BSS 80

;PROMPT

,GET BUFFER ADDRESS
JGET LINE IN BUFFER
;00 NOT EXIT ON ESC
JUSE DEFAULT

;OPEN FILE
JERROR

,'NOT DEFINED' ERROR?
N

Y, DEFINE FILE
,ERROR

,TRY TO OPEN AGAIN

)

PDOS 2.4 DOCUMENTATION

o

pezesogsssmosns

CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

=

PAGE 5-29

8.3.7 XGLM - GET LINE IN MONITOR BUFFER

Mnemonic: XGLM
Value: Y2F4B
Format: XGLM

JLT XXXX ({optional}

Registers: OUT (R1)

Input string

(R9) = Task control block
EQ = Carriage return only
L = Control C

*Uses registers RO-R3,R11 of calling Workspace

The GET LINE IN MONITOR BUFFER subroutine gets a character
line into the monitor buffer. A XGCR primitive is used by
XGLM and hence characters come from a memory message, a
file, or the task console port. The line is delimited by a
<CR>. The status returns EQUAL if only a (CR> is entered.
Register R1 is returned wWith a pointer to the first
character.

The monitor buffer 1is located 256 bytes into the task
control block and is 80 characters in length.

If an <escape> is entered, the task exits to the PDOS
monitor unless a 'JLT' instruction immediately follows the
XGLB call. If such is the case, then XGLB returns with
status set at 'LT'.

Possible Errors: None

OPEN XGLM
X50P
XEXT

sece

;GET LINE
;OPEN FILE
;ERROR

S e

POOS 2.4 DOCUMENTATION

CEPE T
' 5.3.8 XGLU - GET LINE IN USER BUFFER
Mnemonic: XGLU
Value: Y2F4C
Format: XGLU
JLT XXXX {optional}
Registers: OUT (R1) = Input string
“***(R8) = Task control block
EQ = Carriage return only
L = Control C

*Uses registers RO-R3,R11 of calling workspace

The GET LINE IN USER BUFFER subroutine gets a character
line into the user buffer. Register R9 points to the user
buffer. A XGCR primitive is used by XGLU and hence
characters come from a memory message, a file, or the task
console port. The line is delimited by a <CR>.
returns EQUAL if only a (CR)> is entered. Register R1 is
returned with a pointer to the first character.

The user buffer is located at the beginning of the task
control block and is 266 characters in length. However, the
XGLU routine limits the number of input characters to 78
plus two nulls.

1f an <escape? is entered, the task exits to the PDOS
monitor unless a 'JLT' instruction immediately follows the
XGLB call. 1f such is the case, then XGLB returns with
status set at ‘'LT".

Possible Errors: None

CHAPTER 6 PDOS ASSEMBLY PRIMITIVES

PAGE 5-30
ssostssiones
GETN L1 R4,DNUM ,GET DEFAULT &
XGLU JGET LINE
JEQ GETN2 JUSE DEFAULT
XCBD JCONVERT #
JLE ERROR
MOV R1,R4
*
GETNZ MOV R4,SAVE JSAVE #

The status

SEIBETD S S e P

POOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES . PAGE 5-31
ﬂﬂ" azgswsnsuraznles 2
5.3.9 XIPL — INTERRUPT DRIVER PUT LINE
Mnemonic: XIPL
Value: »2F5E
Format: XIPL MOV a9PRT(9) ,R0 ;GET CURRENT PORT #
MOV RO,R2
Registers: IN RO = Port # AL R2,103 ,GET CORRESPONDING
(R1) = String MOV R2,R1 ; OUTPUT EVENT #
NEG R1 JNEGATE TO RESET
The INTERRUPT DRIVER PUT LINE primitive outputs a line to a XSEF JRESET EVENT
console port using the transmitter interrupt features of the LI R1,MESO1 ,GET MESSAGE POINTER
TMS9902 UART. Register RO specifies the port number. No XIPL JOUTPUT LINE
check is made as to its range. Register R1 points to the MOV R2,R1
string to be output. XSul ,SUSPEND UNTIL DONE
The routine first checks the port output variable and waits
until zero. Then, the first character is output, the output
variable set, and transmitter empty interrupt enabled. It
is the responsibility of the calling program to monitor
completion if the line buffer is to be used again. This is
done by suspending on the corresponding output event.
(’-\ The interrupt processor outputs characters until a null

character is encountered. HWhen complete, the output
variable is cleared and the corresponding output event set.

Possible Errors: None

SESSTEsEEs

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

=
-

5.3.10 XPBC - PUT USER BUFFER TO CONSOLE

Mnemonic: XPBC
Value: Y2F57
Format: XPBC

Registers: None

The PUT USER BUFFER TO CONSOLE primitive outputs to the
user console and/or SPOOL file the ASCII contents of the
user buffer. The output string is delimited by the null
character. The user buffer is the first 256 bytes of the
task control block. ’ :

Esch character is masked to 7 bits as it is processed.
Hith the exception of control characters and characters With
the parity bit on, each character increments the column
counter by one. A backspace (’08) decrements the counter
while a carriage return (>0D) clears the counter. Tabs
(»09) are expanded wWith blanks to MOD 8 character zone
fields.

The output routine first sets RTS (SBO 16) and then checks
OSR (TB 27) and BUSY (TB 22). If either one is nonzero,
PDOS swaps to the next task and waits for both to cleer.
After the character is output, RTS is reset (SBZ 16).

If UNIT and SPOOL UNIT have coinciding bits, then the
processed characters are written to the file slot specified
by SPUN (@>1E2(9)). The characters are not sent to the
corresponding output ports. If a disk error occurs in the
spool file, then all subsequent output characters echo as a
bell until the error is corrected by selecting a different
UNIT or resetting the SPOOL UNIT.

Possible Errors: None

PAGE 5-32

CLINE
P

CLINE2

MOV RS,R2

MOVB RO,*R2+
JNE CLINE2

XPBC

JMP CLINE

,GET USER BUFFER PTR

;,LOAD BUFFER, DONE?
N

;Y, OUTPUT BUFFER
,CONTINUE

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

PAGE 5-33

5.3.11 XPCC — PUT CHARACTER TO CONSOLE

Mnemonic: XPCC
value: Y2F58
Format: XPCC

Registers: IN RO = Character

The PUT CHARACTER TO CONSOLE primitive outputs to the user
console and/or SPOOL file the ASCII characters in register
RO. I1f only one character is to be output, it is placed in
the left byte with the right byte zero. If the right byte
is nonzero, it is sent following the left byte.

Each character is masked to 7 bits as it is processed.
With the exception of control characters and characters with
the parity bit on, each character increments the column
counter by one. A backspace (>08) decrements the counter
while a carriage return (>00) clears the counter. Tabs
(>09) are expanded with blanks to MOD 8 character zone
fields.

The output routine first sets RTS (SBO 16) and then checks
DSR (7B 27) and BUSY (TB 22). If either one is nonzero,
PDOS swaps to the next task end waits for both to clesr.
After the character is output, RTS is reset (SBZ 16).

If UNIT end SPOOL UNIT have coinciding bits, then the
processed characters are written to the file slot specified
by SPUN (3>1E2(9)). The characters are not sent to the
corresponding output ports. If a disk error occurs in the
spool file, then all subsequent output characters echo as a
bell wuntil the error is corrected by selecting a different
UNIT or resetting the SPOOL UNIT.

Possible Errors: None

LI RO,'~C’ ;OUTPUT ‘~C*
XPCC

L1 RO,>0A00 ;FOLLOKED BY LF
XPCC

SESSSESsssSSEEEsazusaNsnsessas
PDOS 2.4 DOCUMENTATION v CHAPTER & PDOS ASSEMBLY PRIMITIVES

PAGE 5-34

SFSESSRTSSESsSSSeSERNEtENERTanT

5.3.12 XPCL - PUT CRLF TO CONSOLE

Mnemonic: XPCL
Value: Y»2F69
Format: XPCL XPCL ;OUTPUT CRLF

Registers: None

The PUT CRLF TO chSOLE priﬁi(ivé outputs to the user
console and/or SPOOL file the ASCII characters <LF> and
<(CR>. The column counter is cleared.

The output routine first sets RTS (SBO 16) and then checks
DSR (TB 27) end BUSY (TB 22). If either one is nonzero,
PDOS swaps to the next task and waits for both to clear.
After the character is output, RTS is reset (SBZ 16).

If UNIT and SPOOL UNIT have coinciding bits, then the
processed characters are wWritten to the file slot specified
by SPUN (9>1E2(9)). The characters are not sent to the
corresponding output ports. I1f a disk error occurs in the
spool file, then all subsequent output characters echo as a
bell until the error is corrected by selecting a different
UNIT or resetting the SPOOL UNIT.

Possible Errors: None

Ssomsssssoas

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-35
= S S e ===
5.3.13 XPLC - PUT LINE TO CONSOLE
Mnemonic: XPLC
Value: »2F5A
Format: XPLC LI R1,MES1 JOUTPUT MESSAGE
XPLC
Registers: IN (R1) = ASCII string L1 R1,NUMB JGET NUMBER
XCBD ;CONVERT TO DECIMAL
The PUT LINE TO CONSOLE primitive outputs to the user XPLC ;OUTPUT
console and/or SPOOL file the ASCII character string pointed eee
to by R1. The string is delimited by the null character.
DATA O ;NUMBER HOLDER
Each character is masked to 7 bits as it is processed. BYTE >0A,»>0D ,MESSAGE #1
Hith the exception of control characters and characters with TEXT °ANSWER='
the parity bit on, each character increments the column BYTE O

counter by one. A backspace ()08) decrements the counter
while a cerriage return (>0D) clears the counter. Tabs
(°09) are expanded wWith blanks to MOD 8 character zone
fields.

The output routine first sets RTS (5B0 16) and then checks
DSR (T8 27) and BUSY (TB 22). If either one is nonzero,
PDOS swaps to the next task and naits for both to clear.
After the character is output, RTS is reset (SBZ 16).

If UNIT and SPOOL UNIT have coinciding bits, then the
processed characters are Written to the file slot specified
by SPUN (@1E2(9)). The characters are not sent to the
corresponding output ports. If a disk error occurs in the
spool file, then all subsequent output characters echo as a
bell until the error is corrected by selecting a different
UNIT or resetting the SPOOL UNIT.

Possible Errors: None

o

s=zzssossmzRmssssss
Pt bia b (e it e

5.3.14 XPMC — PUT MESSAGE TO CONSOLE

Mnemonic: XPMC

Value: Y2F5B

. Format: XPMC
DATA message

Registeré: None LA

The PUT ‘MESSAGE .TO , CONSOLE command. outputs to the user
console and/or SPOOL:file the ASCIL character string pointed
to by the word immediately following the PDOS call. The
output string is delimited by the null tharacter.

T I . oo M
masked to 7 bits as . it ;isyy processed.

y s

Each character is

Rith the exception of control cheractersiand characters with
the parity bit on, each character increments the column .

counter by one. A backspace ()08) decrements the counter
while a carriage return (>0D) cléers the counter. Tabs
(°09) are expanded wWith blanks to MOD 8 cheracter zone
fields.

The output routine first sets RTS (SBO 16) and then checks .

OSR (TB 27) and BUSY (TB 22). If either one is nonzero,
PDOS swaps to the next task and waits for both to clear.
After the character is output, RTS is reset (SBZ 16).

If UNIT and SPOOL UNIT heve coinciding bits, then the
processed characters are written to the file slot specified
by SPUN (@>1E2(9)). The characters are not sent to the
corresponding output ports. If a disk error occurs in the
spool file, then all subsequent output characters echo as a
bell until the error is corrected by selecting a different
UNIT or resetting the SPOOL UNIT.

Possible Errors: None

CEEssERERRESEsEs
PDOS 2.4 DOCUMENTATION : CHAPTER .5 .PO0S ASSEMBLY PRIMITIVES

PAGE 5-36

XPMC sOUTPUT HEADER
DATA MESZ

sens

BYTE >0A,>0D JMESSAGE #2
TEXT 'PDOS REV 2.4°
BYTE O

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-37

5.3.15 XPSC - POSITION CURSOR

Mnemonic: XPSC
Value: »2F5D
Format: XPSC OUT™ LI R1,23 ;POSITION TO BOTTOM
ClLR R2 . OF SCREEN
Registers: IN R1 = x position (Row) XPSC ;POSITION
R2 = y position (Column) . XPHC ;OUTPUT MESSAGE
DATA MES1
The POSITION CURSOR primitive positions the cursor on the

console terminal according to the row and column values in
registers R1 and R2. Register R1 specifies the row on the
terminal end generally ranges from 0 to 23, with O being the
top ron. Register RZ specifies the column of the terminal
and ranges from 0 to 79, with 0 being the left-hand column.
Register R2 1is also loaded into the column counter
reflecting the true column of the cursor.

The XPSC primitive outputs either one or two leading
characters followed by the row and column. The leading
cheracters output by XPSC are located in PSC (@»1EC(9)) in
the task control block. When a task is created, PDOS loads
these characters with defaults which come from absolute
locations >0092 and >0093.

The ron and column characters are biased by 20 is the
parity bit of the 1st character is set. Likewise, if the
2nd parity bit is set, then row/column order is reversed.
This accommodates must terminal requirements for pasitioning
the cursor.

The BFIX utility is used to change the position cursor

codes. The TERMINAL utility changes the codes while the
task is executing.

Possible Errors: None

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

PAGE 5-38

o ==z

5.3.16 XTAB - TAB

Mnemonic: XTAB
Value: Y2F4F
Format: XTAB
DATA column #

Registers: OUT RS = Task control block

*Uses registers R9,R11 of calling Workspace
The TAB subroutine positions the cursor to the column
specified by the number following the call. Spaces aere
output until the column counter is greater than or equal to

the parameter.

The first print column is 0.

Possible Errors: None

XPMC

DATA MES1
XTAB

DATA 30

,OUTPUT HEADER

,MOVE TO COLUMN 30

SS====ISSSSS Tt e e e e =

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDDS ASSEMBLY PRIMITIVES PAGE 5-39

EESSSCEEIIS IR RSSERNRR

f 5.4 FILE PRIMITIVES

5.4.1 XAPF - APPEND FILE

Mnemonic: XAPF

Value: Y2F40
Format: XAPF APFL: LI R1,SFILEN ;SOURCE FILE NAME
error LI R2,DFILEN ;DESTINATION FILE NAME
XAPF ;APPEND
Registers: IN (R1) = Source file name JMP ERROR JERROR RETURN
(R2) = Destination file name ;NORMAL RETURN
QUT R9 = Task control block SFILEN TEXT ‘FILE1’
BYTE 0
*Uses registers RO-R6,R9,R11 of calling workspace DFILEN TEXT 'FILE2’
BYTE O

The APPEND FILE subroutine is used to append two files
together. The source and destination file names are pointed
to by registers R1 and R2, respectively. The source file is
sppended to the end of the destination file. The source
file is not altered.

Possible Errors:

50 = Invalid file name
63 = File not defined
60 = File space full

62 = File already open
68 = Disk not formatted
69 = No more file slots
Disk errors

PDOS 2.4 DOCUMENTATION

o o v e v e ez

-

CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

PAGE 5-40

5.4.2 XCFA - CLOSE FILE WITH ATTRIBUTES

Mnemonic: XCFA

Value: Y2F87

Format: XCFA
error

Registers: IN R1 = FILE ID
R2 = File type

The CLOSE FILE WITH ATTRIBUTES primitive closes an open
file identified by FILE 1D. At the same time, the file
attributes are updated to the contents of the left byte of
register R2. Register R1 contains the FILE ID.

1f the file nas opened for sequential access and the file
has been updated, then the END-OF-FILE marker is set at the
current file pointer. If the file was opened for random or
shared access, then the END-OF-FILE merker is updated only
if the file has been extended (data was written after the
current END-OF-FILE marker.)

The LAST UPDATE is updated to the current date end time
only if the file has been altered.

A1l files must be closed when opened! Otherwise, directory
information is be lost and possibly even the file itself.

Passible Errors:

52 = File not open

59 = Invalid file slot
75 = File locked

Disk errors

MOV 9FILID,R1

,GET FILE ID

L1 R2,>2000 ,CLOSE AS OBJECT
XCFA ;CLOSE FILE
JMP ERROR
FILID DATA O JFILE 1D
FILEN TEXT 'FILENAME:EXT'
BYTE 0
R2 = »8000 AC or Procedure file
= >4000 BN or Binary file
= 2000 0B or 9900 object file
= »1000 SY or Condensed 9900 object file
= >0800 BX or BASIC binary token file
= 0400 EX or BASIC ASCII file
= 0200 TX or Text file
= >0100 Undefined
= >0000 Clear file attributes

FILE ID = (Disk #) x 256 + (File slot index)

)

PDOS 2.4 DOCUMENTATION

CHAPTER & POOS ASSEMBLY PRIMITIVES

SssnEaxns

5.4.3 XCHF - CHAIN FILE

Mnemonic: XCHF
Value: Y2F41
Format: XCHF
error return only
Registers: IN (R1) = File name

*Uses all registers of calling Workspace

The CHAIN FILE subroutine is used by the PDOS monitor to
execute program files. The primitive chains from one
program to another independent of file type.

Register R1 points to the chain file name. The file type
determines how the file is to be executed. If the file is
typed 'OB' or 'SY', then the 9900 object loader is called
(XLDF). 1f the file is typed 'BX' or 'EX‘, then the PDOS
BASIC interpreter loads the file and begins executing at the
lowest 1line number. Likewise, if the file is typed ‘AC’,
then control returns back to the PDOS monitor and further
requests for console characters reference the file.

The XCHF call returns only if an error occurs during the
chain operation. A1l other errors, such as those occurring
in BASIC, return to the PDOS monitor.

Parameters may be passed from one program to another
through the user TEMP varisbles located in the task control
block. These are located at o> 1FA(9), @ 1FC(8), and
D FE(9).

Possible Errors:
60 = Invalid file name

63 = File not defined
60 = File space full

61 = No start address
63 = Illegal object tag
64 = Checksum error

65 = Exceeds task size

66 = File not loadable

77 = Procedure not memory resident
Disk errors

EESERE =

LI R1,FILEN
XCHF
XERR

JGET FILE NAME
,CHAIN FILE
JPROBLEM
FILEN TEXT 'NEXTPRGM'
BYTE O

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-42

5.4.4 XCLF - CLOSE FILE

Mnemonic: XCLF
Value: Y2F86
Format: XCLF
error

Registers: IN R1 = FILE ID

The CLOSE FILE primitive closes an open file identified by
FILE ID. Register R1 contains the FILE ID. If the file was
opened for sequential access and the file was updated, then
the END-OF-FILE marker is set at the current file pointer.

If the file was opened for random or shared access, then
the END-OF-FILE marker is updated only if the file was
extended (ie. data was written after the current END-OF-FILE
marker) .

1f the file has been altered, the current date and time is
store in the LAST UPDATE variable of the file directory.

A1l files must be closed when opened! Otherwise, directory
information is lost and possibly even the file itself.

Possible Errors:

52 = File not open

59 = Invalid file slot
75 = File locked

Disk errors

MOV OFILID,R1 ,GET FILE 1D
XCLF ,CLOSE FILE
JMP ERROR

FILID DATA O ,FILE 1D

FILE ID = (Disk #) x 2566 + (File slot index)

-

=

PDOS 2.4 DOCUMENTATION CHAPTER & PDOS ASSEMBLY PRIMITIVES

PAGE 5-43

5.4.5 XCPY - COPY FILE

Mnemonic: XCPY
Value: 12F42
Format: XCPY
error
Registers: IN R1 = Source file name
R2 = Destination file name
OUT R9 = Task control block FILES
*Uses registers RO-R6,R9,R11 of calling workspace FILED

The COPY FILE primitive copies the source file into the

destination file.

The source file is pointed to by register

R1 and the destination file is pointed to by register R2. A

control C halts
returns.

the copy, prints ‘+C' to the console, and

The file attributes of the source file are automatically
transferred to destination file.

Possible Errors:

50 = Invalid file name
63 = File not defined
60 = File space full

62 = File already open
68 = Disk not formatted
69 = No more file slots
70 = Position error
Disk errors

LI R1,FILES ,SOURCE FILE NAME
LI R2,FILED ;DESTINATION FILE NAME

XCPY ;COPY FILE
JHP ERROR ;PROBLEM
;CONTINUE
TEXT ' TEWP'
BYTE 0
TEXT 'TEMP:BK/1'
BYTE O

——— = (b

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-44

5.4.6 XDFL — DEFINE FILE

Mnemonic: XDFL
Value: Y2F80
Format: XDFL
error

Registers: IN. RO = File size
(R1) = File name

The DEFINE FILE primitive creates in a PDOS disk ' directory
a nen file entry, specified by register R1. A PDOS file
name consists of an alpha character followed by up to 7
additional characters. An optional 3 character extension
can be added if preceded by a colon. Likewise, the
directory level and disk number are optionally specified by
a semicolon and slash respectively.

Register RO contains the number of sectors to be initially
allocated at file definition. 1f register RO is nonzero,
then a contiguous file is created with RO sectors.
Otherwise, only one sector is allocated and a non-contiguous
tag assigned. Each sector of allocation corresponds to 252
bytes of data.

A contiguous file fecilitates random access to file data
since PDOS can directly position to any byte within the file
without having to follow sector links. A contiguous file is
sutomatically changed to a non-contiguous file if it is
extended past its initial allocation.

Possible Errors:

50 = Invalid file name

51 = File already defined
67 = File directory full
62 = File already open
68 = Disk not formatted
Disk errors

CLR RO ;SEQUENTIAL FILE

LI R1,FILENT ;GET FILE NAME

XDFL ;DEFINE FILE
XERR ;ERROR

LI RO, 100 ;RANDOM ACCESS FILE

LI R1,FILEN2 ;GET FILE NAME

XOFL ;DEFINE CONTIGUOUS FILE
XERR

sesee

RO > 0 Contiguous file with RO sectors

RO = 0 Non-contiguous file

f’*

PDOS 2.4 DOCUMENTATION

CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

o
-

~ PAGE 5-45

5.4.7 XDLF - DELETE FILE

Mnemonic: XOLF

Value: Y2F81

Format: XDLF
error

Registers: IN (R1) = File name

The DELETE FILE primitive removes from the disk directory FILEN
the file whose name is pointed to by register R1 and
releases all sectors associated with that file for use by
other files on that same disk. A file cannot be deleted if

it is delete (*) or write (**) protected.

Possible Errors:

60 = Invalid file name
63 = File not defined

58 = File delete or write protected

62 = File already open
68 = Disk not formatted
Disk errors

LI R1,FILEN ,GET FILE NAME PTR
XDLF ,DELETE FILE
JMP ERROR JERROR
sNORMAL RETURN

TEXT 'TEMP/2'
BYTE O

=zssszsssesmmEswas

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

SZEASSSRRs

5.4.8 XFFN - FIX FILE NAME

Mnemonic: XFFN
Value: Y2F48
Format: XFFN
error

Registers: IN (R1) = File name

QUT RO = Disk #
(R1) = Fixed file name
R9 = Task control block

*Uses registers RO-R3,R9,R11 of calling workspace.

The FIX FILE NAME subroutine parses a character string for
file name, extension, directory level, and disk number. The
results are returned in the 32 character monitor work buffer
(MHB(9)). Register RO is also returned with the disk
number. The error return is used for an invalid file name.

The monitor wWork buffer is cleared and the following
assignments are made:
{R1) ==
30(1) = File name
a@8(1) = File extension
311(1) = File directory level

System defaults are used for the disk number and file
directory level when they are not specified in the file
name.

Possible Errors:

50 = Invalid file name

XGLU JGET INPUT LINE
XFFN JFIX FILE NAME
XERR JERROR IN NAME

0 2 4 6 8 10 12 14 16

. ' . . s .
oo

| File name { Ext L} 00==)

. .

Cﬂ'\

9

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-47

o e o o e e 3 ot . o
e

i

5.4.9 XLDF - LOAD FILE

Mnemonic: XLDF
Value: Y2F44
Format: XLOF
error

Registers: IN RO = Start memory address
R1 = End memory address
(R2) = File name

ouT RO
R9

Entry address
Task control block

*Uses all registers except R10

The LOAD FILE primitive reads and loads TI9900 object code
into user memory. The file name pointer is passed in
register R2. Registers RO and R1 specify the memory bounds
for the relocatable load. The file must be typed '0B' or
)

The TI9900 object must be relocatable and register RO is
returned to the calling routine wWith the program entry
address. If register RO equals zero, no stert has been
found. Valid TI9900 object tags for 'OB' files are defined
as follows:

Tag Meaning Tag Meaning

0 = Program ID 8 = Ignore checksum

1 = 1Illegal 9 = Illegal
*2 = Relocatable entry *A = Relocatable address
3 = Illegal *B = Absolute data

4 = Illegal *C = Relocatable data

5 = Illegal D = I1legal

6 = Illegal E = I1legal

7 = Checksum F = End of record

A 'SY' file is generated from an 'OB' file by the SYFILE
utility. The condensed object code contains only 4 types of
object tags, each followed by a 2-byte binary number. These
are indicated by an asterisk (*) in the above table.

Possible Errors:

63 = Illegal tag character
64 = Checksum error

65 = Memory limit exceeded
66 = File not loadable
Disk errors

XGML ,GET MEMORY LIMITS
Al RO,>0100 ;ADD DISPLACEMENT
LI R2,FILEN ,GET FILE NAME

XLDF ;LOAD FILE
XERR ,ERROR
MOV RO,RO ;0K ADORESS?
JEQ ERROR ;N
B *RO)Y, GOTO ROUTINE

000001DT=HEREAO0OO0BE865B6C6CCEFSF20000F

AxxBheB11Co_2xx

J— SZTISIesssIIasEnEtiTEs

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDDS ASSEMBLY PRIMITIVES PAGE 5-48
EEEsEEnTRIssRRnsRssE
5.4.10 XLFN - LOOKUP FILE NAME
Mnemonic: XLFN
Value: Y2FD8
Format: XLFN XNOP MOV @2(13) ,R1 ;GET FILE ID
Found XFNM JFIX FILE NAME
Not found XSER ;ERROR
XLFN ;LOOKUP NAME, FOUND?

Registers: IN RO = Disk #
(R1) = File name

OUT R3 = FILE ID ERRB2
R? = File slot address

The LOOKUP FILE NAME primitive searches through the file
slot table for the file name as specified by registers RO
and R1. If the name is not found, register R3 returns with
a -1. Otherwise, register R3 returns the associated FILE 1D
and register R7? the address of the file slot.

A file slot is a 32 byte buffer where the status of an open
file is maintained. There are 32 file slots available. The
FILE ID consists of the disk # and the file slot index.

File slots assigned to read only files are skipped and not
considered for file match.

Possible Errors: None

JMP ERRE2 ;Y, FILE ALREADY OPEN

e

XERS ,FILE ALREADY OPEN
DATA 62

POOS 2.4 DOCUMENTATION CHAPTER 6 PDOS ASSEMBLY PRIMITIVES PAGE 5-49

5.4.11 XIKF - LOCK FILE

Mnemonic: XLKF
Value: Y2F91
Format: XLKF MOV oFILEID,R1 ;GET FILE ID
error XLKF ;LOCK FILE

JMP ERROR ,PROBLEM
Registers: IN R1 = FILE ID

The LOCK FILE primitive locks an OPENed file such that no
other task cen gain access until an UNLOCK FILE (XULF) is
executed.

A locked file is indicated by a -1 (?FF) in the 1left byte
of the lock file parameter (LF) of the file slot usage (FS)
command. The locking task number is stored in the left byte
of the task number paremeter (TN). Only the locking task
has access to the locked file.

Possible Errors:

62 = File not open

69 = Invalid file slot
75 = File locked

Disk errors

B T S S S S S T S S ST S S S S S S S S S S S S S SIS SIS SSSSSSSSSSS

PDOS 2.4 DOCUMENTATION ’ CHAPTER 6 PDOS ASSEMBLY PRIMITIVES PAGE 5-50

5.4.12 XLST — LIST FILE DIRECTORY

Mnemonic: XLST
Value: Y2F45
Format: XLST MLST XGNP : JGET SELECT LIST
error JH MLST02 ,PARAMETER OK
LI R1,NULL ;USE NULL STRING
Registers: IN (R1) = List string *
MLST02 XLST ;CALL FOR LIST
OUT R9 = Task control block XERR JERROR
XEXT ;EXIT TO MONLITOR

*Uses registers RO-R8,R9,R11

The LIST FILE DIRECTORY subroutine causes PD0S to output to
the console terminal a formatted file directory listing,
according to the select string pointed to by register R1.
The output is interrupted at any time by a character being
entered on the console port. An <esc) character returns
control to the PDOS monitor.

(See 4.17 LIST DIRECTORY.)

Possible Errors: Disk Errors

)

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

PAGE 5-51

5.4.13 XNOP - OPEN SHARED RANDOM FILE

Mnemonic: XNOP
Value: »2F85
Format: XNOP
error
Registers: IN (R1) = File name
OUT RO = File type
R1 = FILE ID

The OPEN SHARED RANDOM FILE primitive opens a file for
shared random access by assigning the file to an erea of
system memory called a file slot. A FILE ID and file type
are returned to the calling program in registers R1 and RO,
respectively. Thereafter, the file is referenced by the
FILE ID and not by the file name. A new entry in the file
slot table is made only if the file is not already opened
for shared access.

The FILE 1D (returned in register R1) is a 2-byte number.
The left byte is the disk number and the right byte is the
channel buffer index. The file type is returned in register
RO.

The END-OF-FILE marker on a shared file is changed only
when the file has been extended. A1l data transfers are
buffered through a channel buffer; data movement to and from
the disk is by full sectors.

An "opened count" is incremented each time the file is
shared-opened and is decremented by each close operation.
The file is only closed by PO0S when the count is zero.
This count 1is saved in the right byte of the locked file
parameter (LF) listed by the file slot usage command (FS).

Possible Errors:

50 = Invalid file name
63 = File not defined
60 = File space full

62 = File already open
68 = Disk not formatted
69 = No more file slots
Disk errors

FILET
FILID
FILEN

LI R1,FILEN ,GET FILE NAME

XNOP ,OPEN SHARED FILE
JMP ERROR JERROR

MOV RO,9FILET ;SAVE TYPE

MOV R1,9FILID ;SAVE FILE ID

DATA O
DATA O
TEXT 'FILENAME:EXT'
BYTE O

FILE ID = (Disk #) x 256 + (File slot index)

pomsnmas

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-52
==

5.4.14 XPSF - POSITION FILE

Mnemonic: XPSF
Value: Y2F8C
Format: XPSF MOV QFILID,R1 ,GET FILE ID
error MOV GRECN,R2 ;GET RECORD #
MPY 8C36,R2 ;GET BYTE INDEX
Registers: 1IN R1 = FILE ID ’ XPSF ;POSITION KITHIN FILE
R2,R3 = Byte position XERR
The POSITION FILE primitive moves the file byte pointer to
any byte position within a file. The FILE ID is given in FILID DATA O JFILE ID
register R1 and the two word byte index 1is specified in RECN DATA O ,RECORD #
registers R2 and R3. - €38 DATA 36 ,BYTES/RECORD

The file must have been opened for random access (ROPEN or
SOPEN). An error occurs if the byte index is greater than
the current End-of-File marker.

A contiguous file greatly enhances the speed of the
position command since the desired sector is directly
computed. However, the position commend does work wWith
non-contiguous files, as PDOS follows the sector links to
the desired byte position.

A contiguous file is extended by positioning to the
End-of-File marker and writing data. However, POOS alters
the file type to non-contiguous and rendom access is much
slower,

Possible Errors:

52 = File not open

69 = Invalid file slot
70 = Position error
Disk errors

)

PDOS 2.4 DOCUMENTATION

CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

PAGE 5-53

5.4.15 XRBF — READ BLOCK

Mnemonic: XRBF

Value: Y2F88

Format: XRBF
error

Registers: IN RO # of bytes to be read
R1 = FILE ID
(R2) = Buffer address

OUT R3 = # of bytes read on error

The READ BLOCK primitive reads the number of bytes
specified in register RO from the file specified by the FILE
ID in register R1 into the user memory as pointed to by
register R2. If the channel buffer has been rolled to disk,
the least used buffer is freed and the desired buffer is
restored to memory. The file slot ID is placed on the top
of the last-access queue.

If an error occurs during the read operation, the error
return is taken with the error number in register RO and the
number of bytes actually read in register R3.

The read is independent of the data content. The buffer
pointer in register R2 is on any byte boundary. The buffer
is not terminated with a null.

A byte count of zero in register RO results in one byte
being read from the file. This facilitates single byte data
acquisition.

Possible Errors:

52 = File not open

56 = End of file

69 = Invalid file slot
Disk errors

ERROR

FILID

BUFF

L1 RO,NUMB
MOV SFILID,R1
LI R2,BUFF
XRBF

JMP ERROR

CI RO,56
JNE ERROR2
MOV R3,aNUMB

DATA O
DATA O
BSS 132

CLR RO
MOV 9FILED,R1
STHP R2
XRBF
JHP ERROR

JGET NUMBER OF BYTES

,GET FILE 1D

;GET BUFFER POINTER

:READ DATA

JEOF?
;N

)Y, SAVE # BYTES READ

;8 OF BYTES TO READ

;BUFFER

;READ 1 CHARACTER
,GET FILE SLOT ID
JREAD CHARACTER INTO RO

;READ CHARACTER

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

PAGE 5-54

5.4.16 XRDE — READ DIRECTORY ENTRY

Mnemonic: XROE
Value: Y2F4D
Format: XRDE
error

Registers: IN RO = Disk #
R1 = Read flag
(R2) = Last 32 byte directory entry

3 1MF2(9) = Sector &

@>1F4(8) = # of directory entries

OUT RO = Disk &
(R2) = Next 32 byte directory entry
RS = Task control block

@ 1F2(9) = Sector #

@ 1F4(9) = # of directory entries

*Uses registers RO-R4,R3,R11 of calling Workspace

The READ DIRECTORY ENTRY subroutine reads sequentially
through a disk directory. I1f register R1 is zero, then the
routine begins with the first directory entry. If register
R1 is nonzero, then based on the last directory entry
(pointed to by register R2), the next entry is read.

The calling routine must maintain registers RO and R2, the
user 1/0 buffer, and temps >1F2(9) and >1F4(8) of the task
control block between calls to XRDE.

Possible Errors:
53 = File not defined (End of directory)

68 = Disk not formatted
Disk errors

START

LooP

LOOPO2

CLR R1 JBEGIN WITH 1ST ENTRY
JMP LOOPO2

SETO R1 ;READ NEXT ENTRY

MOV 9TSM1(9) ,RO ,GET DISK #

XRDE ,READ DIRECTORY ENTRY
XERR JERROR

MOV 912(2) ,R4 ;GET FILE TYPE

PDOS 2.4- DOCUMENTATION

e eememe
===I===

CHAPTER 5 PDOS ASSEMBLY PRIMITIVES " PAGE 5-55

5.4.17 XRDN - READ DIRECTORY NAME

Mnemonic: XRON

Value: Y2F4E

Format: XRDN
error

Registers: IN RO = Disk #
MWB = File name

OUT RO = Disk #
R1 = Sector # in memory
(R2) = Directory entry
R9 = Task control block

*Jses registers RO-R5,R9,R11 of calling norkspace

The READ DIRECTORY NAME subroutine reads directory entries
by file name. Register RO specifies the disk number. The
file name is located in the Monitor Work Buffer (MWB) in a
fixed format. Several other perameters are returned in the
monitor TEMP storage of the user status buffer. These
variables assist in the housekeeping operations on the disk
directory.

(See 5.4.8 FIX FILE NAME.)

Possible Errors:

53 = File not defined
68 = Disk not formatted
Disk errors

OPENF MOV 92(13) ,R1 ;GET FILE NAME POINTER

XFNM JFIX NAME IN MHWB
XSER ,ERROR

XRON ,READ DIRECTORY ENTRY
XSER JERROR

CB *R2,3B24 ;$7 (DRIVER?)

92172(8) => Monitor Work Buffer

PDOS 2.4 DOCUMENTATION

CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

PAGE 5-56

5.4.18 XRFA — READ FILE ATTRIBUTES

Mnemonic: XRFA
Value: YZF8E
Format: XRFA
error

Registers: IN (R1) = File name

0UT R2 File attribute

The READ FILE ATTRIBUTES primitive returns in register R2
the 16-bit file attributes word. The file name is pointed
to by register R1. File attributes are defined as follows:

’80xx AC - PROCEDURE FILE

»40xx BN - BINARY FILE

»20xx 0B - 9900 OBJECT FILE

»10xx SY - SYSTEM OBJECT FILE
»08xx BX - BASIC TOKEN FILE

’04xx EX - BASIC ASCII SOURCE FILE
202xx TX - ASCII TEXT FILE

»0Mxx UD - USER DEFINED FILE
»xx04 C - CONTIGUOUS FILE
»xx02 * - DELETE PROTECT

xx01 ** - DELETE AND HRITE PROTECT

Possible Errors:

50 = Invalid file name
53 = File not defined
60 = File space full
Disk errors

FILEN

-
LI R1,FILEN JGET FILE NAME
XRFA JREAD FILE ATTRIBUTES
XERR ,PROBLEM
SRL R2,2 ;BINARY FILE?
JNC PNO N
;Y
TEXT 'PRGM:BIN'
BYTE O
-

- o o o i 0 e o e
SISSSSS==E=s

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ‘ASSEMBLY PRIMITIVES PAGE 5-57

f
5.4,19 XRLF — READ LINE
Mnemonic: XRLF
Value: »2F89
Format: XRLF MOV @FILID,R1 ,GET FILE ID
error LI R2,BUFF JGET BUFFER POINTER
XRLF JREAD LINE
Registers: IN R1 = FILE ID JMP ERROR
(R2) = Buffer address .
OUT RO = Error # FILID DATA O
R3 = # of bytes read on error BUFF BSS 132 ;MAXIMUM BUFFER NEEDED

The READ LINE primitive reads one line, delimited by a

carriage return <CR>, from the file specified by the FILE ID

in register R1. If a <CR> 1is not encountered after 132

characters, then the line and primitive are terminated.

Register R2 points to the buffer in user memory where the

line is to be stored. If the channel buffer has been rolled

to disk, the least used buffer is freed and the buffer is

restored to memory. The file slot ID is placed on the top

of the last-access queue.

1f an error occurs during the read operation, the error
return is taken with the error number in register RO and the
number of bytes actually read in register R3.

The line read is dependent upon the data content. A1l line
feeds <LF> are dropped from the data streem and the <CR) is
replaced with a null. The buffer pointer in register R2 is
on any byte boundary. The buffer is not terminated with a
null on an error return.

Possible Errors:

52 = File not open

56 = End of file

59 = Invalid file slot
Disk errors

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

PAGE 5-58

5.4.20 XRNF - RENAME FILE

Mnemonic: XRNF

Value: Y2F90

Format: XRNF
error

01d file neme
New file name

Registers: IN (R1)
(R2)

The RENAME FILE primitive renames a file in & PDOS disk
directory. The old file name is pointed to by register R1.
The nen file name is pointed to by register R2.

The XRNF command is used to change the diréctory level for
any file by Jletting the new file name be a numeric string
equivalent to the new directory level. XRNF first attempts
a conversion on the second parameter before renaming the
file. 1f the string converts to @ number without error,
then only the level of the file is changed.

Possible Errors:
50 = Invalid file name

51 = File already defined
Disk errors

" = o o e o

LEVEL
FILEN1

FILEN2

L1 R1,FILEN1 JGET OLD FILE NAME
L1 R2,FILEN2 JGET NEW FILE NAME

- XRNF JRENAME FILE

XERR ,PROBLEM

L1 R2,LEVEL JGET NEW LEVEL

XRNF ,CHANGE DIRECTORY LEVEL
XERR

coee

DATA 10

TEXT 'OBJECT:OLD*
BYTE 0

TEXT 'OBJECT:NEW'
BYTE O

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-58

-

5.4.21 XROO — OPEN READ ONLY RANDOM FILE

Mnemonic: XR0OO
Value: Y2F82
Format: XR0OO LI R1,FILEN JGET FILE NAME
error XR0OO ;OPEN READ ONLY FILE
JMP ERROR ,ERROR
Registers: IN (R1) = File name MOV RO,3FILET ;SAVE TYPE

MOV R1,9FILID ;SAVE FILE ID

OUT RO = File type oo
R1 =FILE ID
FILET DATA O
The OPEN READ ONLY RANDOM FILE primitive opens a file for FILID DATA O
random access by assigning the file to an area of system FILEN TEXT 'FILENAME:EXT'
memory called a file slot, and returning a FILE ID and file BYTE O

type to the calling program. Thereafter, the file is
referenced by the FILE ID and not by the file name. This
type of file open provides read only access.

The FILE ID (returned in register R1) is a 2-byte number. FILE ID = (Disk #) x 256 + (File slot index)
The 1left byte is the disk number and the right byte is the
channel buffer index. The file type is returned in register

5'.h RO.

Since the file cannot be altered, it cannot be extended nor
is the LAST UPDATE parameter cheanged when it is closed. All
data transfers are buffered through a channel buffer and
data movement to and from the disk is by full sectors.

A new file slot is allocated for each XROO call even if tﬁe
file is already open. The file slot is allocated beginning
with slot 1 to 32.

Possible Errors:

50 = Invalid file name
53 = File not defined
62 = File already open
68 = Disk not formatted
69 = No more file slots
Disk errors

PDOS 2.4 DOCUMENTATION CHAPTER 5§ PDOS ASSEMBLY PRIMITIVES PAGE 5-60

-
-

5.4.22 XROP - OPEN RANDOM FILE

Mnemonic: XROP
Value: Y2F83
Format: XROP LI R1,FILEN ;GET FILE NAME
error XROP ,OPEN RANDOM FILE
JMP ERROR ;ERROR
Registers: IN (R1) = File name MOV RO,aFILET ;SAVE TYPE
MOV R1,9FILID ;SAVE FILE 1D
OUT RO = File type ceee
R1 =FILE 1D
FILET DATAO
The OPEN RANDOM FILE primitive opens a file for random FILID DATA O
access by assigning the file to an area of system memory FILEN TEXT 'FILENAME:EXT'
called a file slot, and returning a FILE ID and file type to BYTE O

the calling program. Thereafter, the file is referenced by
the FILE ID and not by the file name.

The FILE 10 (returned in register R1) is a 2-byte number. FILE ID = (Disk #) x 266 + (File slot index)
The left byte is the disk number and the right byte is the

channel buffer index. The file type is returned in register

RO.

The END-OF-FILE marker on @ random file 1is changed only
when the file has been extended. A1l data transfers are
buffered through a chennel buffer and data movement to and
from the disk is by full sectors.

The file slot is allocated beginning with slot 32 to slot
1.

Possible Errors:

50 = Invalid file name
53 = File not defined
62 = File already open
68 = Disk not formatted
69 = No more file slots
Disk errors

PDOS 2.4 DOCUMENTATION

PAGE 5-61

$5.4.23 XRST —~ RESET FILES

Mnemonic: XRST
Value: Y2F46
Format: XRST

Registers: IN R1 = Reset type

The RESET FILES primitive closes all open files either by
task or disk number. The command also clears the assigned
input FILE ID. If register R1 equals -1, then all files
associated with the current task are closed. Otherwise,
register R1 specifies a disk and all files opened on that
disk are closed.

XRST has no error return and hence closes all files even
though errors occur in the close process. This is necessary
since files may be opened on a write protected disk, for
instance, and a error occurs before the files could be
closed.

Possible Errors: None

5.4.24 XRWF — REWIND FILE

Mnemonic: XRHWF
vValue: Y2F8D
Format: XRWF
error

Registers: IN R1 = FILE ID

The REWIND FILE primitive positions the file specified by

the FILE ID in register R1, to byte position zero.

Possible Errors:

62 = File not open

59 = Invalid file slot
70 = Position error
Disk errors

DONE SETO R1
XRST

MOV IDISKN,R1
XRST

REWIND MOV aFILID,R1
XRWF
XERR

FILID DATA O

JCLOSE ALL TASK FILES

,PREPARE TO REMOVE DISK
;CLOSE ALL FILES
JREMOVE DISK

,GET FILE ID
JREKWIND FILE
,PROBLEM

SRESS

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

o s 0 e et o 0 e o

PAGE 5-62

5.4.25 XSOP — OPEN SEQUENTIAL FILE

Mnemonic: XSOP

Value: Y2F84

Format: XS0P
error

Registers: IN (R1) = File name

OUT RO = File type

LI R1,FILEN ,GET FILE NAME

XsSopP ,OPEN SEQUENTIAL FILE
JMP ERROR ,ERROR

MOV RO,3FILET ;SAVE TYPE

MOV R1,9FILID ;SAVE FILE ID

R1 = FILE ID
FILET DATA O
The OPEN SEQUENTIAL FILE primitive opens a file for FILID DATA O
sequential access by assigning the file to an area of system FILEN TEXT 'FILENAME:EXT'
memory called a file slot and returning a FILE ID and file BYTE O
type to the calling program. Thereafter, the file is
referenced by the FILE ID and not by the file name.
The FILE ID (returned in register R1) is a 2-byte number. FILE ID = (Disk #) x 256 + (File slot index)

The left byte is the disk number and the right byte is the
channel buffer index. The file type is returned in RO.

The END-OF-FILE marker on a sequential file is changed
nhenever data 1is wWritten to the file. A1l data transfers
are buffered through a channel buffer; data movement to and
from the disk is by full sectors.

The file slots are allocated beginning with slot 32 down to
slot 1.

Possible Errors:

50 = Invalid file name
53 = File not defined
62 = File already open
68 = Disk not formatted
69 = No more file slots
Disk errors

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES ~ PAGE 5-63
5.4.26 XSZF - SIZE DISK
Mnemonic: XSZF
Value: Y2F47
Format: XSZF CLR RO ,SELECT DISK #0
error XSZF JGET DISK SIZE
XERR ,ERROR
Registers: IN RO = Disk # MOV R8,R1
XCBM JOUTPUT FREE
OUT R5 = Largest contiguous block DATA SPM1
R6 = Number of sectors allotted XPLC ;PRINT
R? = Number of sectors used MOV R5,R1
R8 = Number of free sectors XCBM ;OUTPUT LARGEST
R9 = Task control block DATA SPM2 ; CONTIGUOUS BLOCK

*Uses registers R1-R8,R9,R11 of calling workspace

The SIZE DISK subroutine returns disk size parameters in
registers R6, R6, R7, and RB. Register R? returns the total
number of sectors used by all files. Register R6 returns
the number of sectors allocated for file storage.

Register R8 is calculated from the disk sector bit map and
reflects the number of sectors available for file
allocation. Register RS is returned with the size of the
largest block of contiguous sectors. This is useful in
defining large files.

Possible Errors:

68 = Disk not formatted
Disk errors

SPM1

SPM2
SPM3

SPM4

XPLC

XTAB ;TAB TO COLUMN 20
DATA 20

MOV R7,R1

XCBM ;0UTPUT USED
DATA SPM3

XPLC ;PRINT

MOV R6,R1

XCBM ;OUTPUT ALLOCATED
DATA SPH4

XPLC ;PRINT

XEXT

BYTE >0A,>0D
TEXT 'FREE:"
BYTE 0

BYTE >2C,0
TEXT ‘USED:"
BYTE 0

TEXT '/
BYTE 0

PDOS 2.4 DOCUMENTATION

S A

CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

PAGE 5-64

o s . ———

e

5.4.27 XULF - UNLOCK FILE

Mnemonic: XULF
Value: Y2F92
Format: XULF MOV GFILID,R1
error XULF
XERR
Registers: IN R1 = FILE 1D .
The UNLOCK FILE primitive unlocks a locked file for access FILID DATA O

by any other task.
(See 5.4.11 XLKF - LOCK FILE.)
Possible Errors:

62 = File not apen

B8 = Invalid file slot
Disk errors

;GET FILE ID
;UNLOCK FILE

,FILE ID

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-65

5.4.28 XWBF — WRITE BLOCK

Mnemonic: XWBF
Value: Y2F8A
Format: XWBF
error
Registers: IN RO = Byte count
R1 = FILE 1D

(R2) = Buffer address

The WRITE BLOCK primitive wWrites from a memory buffer,
pointed to by register R2, to a disk file specified by the
FILE ID in register R1. Register RO specifies the number of
bytes to be written. If the channel buffer has been rolled
to disk, the least used buffer is freed and the buffer is
restored to memory. The file slot ID is placed on the top
of the last-access queue.

The write is independent of the data content. The buffer
pointer in register R2 is on any byte boundary. The write
operation is not terminated with a null.

A byte count of zero in register RO results in no data
being written to the file.

If it is necessary for the file to be extended, PDOS first
uses sectors already linked to the file. If a null or end
link is found, a new sector obtained from the disk sector
bit map 1is linked to the end of the file. If the file was
contiguous, it is retyped as a non-contiguous file.

Possible Errors:
52 = File not open

59 = Invalid file slot
Disk errors

L1 RO,252 JHRITE FULL SECTOR
MOV @FILID,R1T ;GET ID
L1 R2,BUFFER ,GET BUFFER ADDRESS

XWBF JHRITE TO FILE
XERR
FILID DATA O ,FILE ID
BUFFER BSS 252 ,SECTOR BUFFER

RO = 0 MWrite no data

Extended file

Contiguous changes to non-contiguous

ssz=sssssssssaszsss

PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-66
SEeRERTEnsETEEn.
ﬂ\
5.4.29 XWFA — WRITE FILE ATTRIBUTES :
g
Mnemonic: XWFA
Value: Y2FBF
Format: XWFA LI R1,FILEN ;GET FILE NAME
error LI R2,CLRC ;CLEAR CONTIGUOUS
v XWFA ;WRITE ATTRIBUTE
Registers: IN (R1) = File name XERR
v (R2) = ASCIL file attributes LI R2,PROTF ;SET BINARY & PROTECTED
XWFA JSET
The WRITE FILE ATTRIBUTES primitive sets the attributes of XERR
the file specified by the file name pointed to by register
R1. Register R2 points to an ASCI1 string containing the
new file attributes. The formet is: FILEN TEXT 'DATA:BIN'
BYTE O
(R2) = {file type){protection} CLRC TEXT '#'
BYTE O
{file type)} = AC - PROCEDURE FILE PROTF TEXT ‘BN*x'
BN - BINARY FILE BYTE O
0B - 9900 OBJECT
SY - SYSTEM FILE
BX - BASIC TOKEN FILE
EX - BASIC SOURCE FILE
TX - TEXT FILE -—

UD - USER DEFINED FILE

{protection)} = * - Delete protect
** - Delete and Write protect

1f register R2 equals zero, then all flags, with the
exception of the contiguous flag, are cleared. If register
RZ points to a '#', then the contiguous flag is cleared.

Possible Errors:

50 = Invalid file name
53 = File not defined
54 = Invalid file type
Disk errors

=

PDOS 2.4 DOCUMENTATION

5.4.30 XWLF — WRITE LINE

Mnemonic: XWLF
Value: Y2F8B
Format: XHLF
error

Registers: IN R1 = FILE ID
(R2) = Buffer address

The WRITE LINE primitive writes a line delimited by a null
character to the disk file specified by the FILE ID in
register R1. Register R2 points to the string to be
Wwritten. If the channel buffer has been rolled to disk, the
least used buffer is freed and the buffer 1is restored to
memory. The file slot ID is placed on the top of the
last-access queue.

The write line command is independent of the data content,
Wwith the exception that a null character terminates the
string. The buffer pointer in register R2 is on any byte
boundary. A single write operation continues until a null
character is found.

1f it is necessary for the file to be extended, PDOS first
uses sectors already linked to the file. If a null link is
found, @ new sector obtained from the disk sector bit map is
linked to the end of the file. I1f the file was contiguous,
it is retyped as a non-contiguous file.

Possible Errors:
52 = File not open

69 = Invalid file slot
Disk errors

CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

PAGE 5-67

FILID
LINE

MOV QFILID,R1 ;GET FILE ID

LI R2,LINE ;GET LINE

XHLF JHRITE LINE
XERR JERROR

DATA O ,FILE ID

BYTE >0A,>0D
TEXT 'NO DIAGNOSTICS'
BYTE O

Null delimiter

Extended file

Contiguous changes to non-contiguous

=3

PDOS 2.4 DOCUMENTATION CHAPTER 6 PDOS ASSEMBLY PRIMITIVES

PAGE 5-68

5.5 SUPPORT PRIMITIVES

5.5.1 XCBD — CONVERT BINARY TO DECIMAL

Mnemonic: XCBD
Value: »2FD6

Format: XCBD

number

Registers: IN R1

string pointer

ouT (R1) = .
3
The CONVERT BINARY TO DECIMAL primitive converts a 16 bit, NUMB
2's complement number to a character string. The number to SAVE

be converted is passed to XCBD in register R1. Register R1
is also returned with a pointer to the converted character
string located in the monitor work buffer. Lesding zeros
are suppressed and a negative sign is the first character
for negative numbers. The string is delimited by a null.

Possible Errors: None

5.5.2 XCBH — CONVERT BINARY TO HEX

Mnemonic: XCBH
Value: Y2FD7
Format: XCBH

Registers: IN R1

number

OUT (R1)

string pointer

The CONVERT BINARY TO HEX primitive converts a 16-bit

number to its hexadecimal (base 16) representation. The »
number is passed in register R1 and a pointer to the ASCII NUMB
string is also returned in register R1. The converted SAVE

string is in the monitor work buffer and consists of four
hexadecimal characters followed by a null.

Possible Errors: None

MOV aNUMB,R1
XCBD

MOV R1,3SAVE

XPLC

DATA 1234
DATA O

MOV aNUMB,R1
XCBH

MOV R1,3SAVE
LI RO,' »'
XPCC

XPLC

DATA 1234
DATA O

,GET NUMBER
;CONVERT TO PRINT
JSAVE POINTER
JPRINT

,NUMBER HOLDER
JSAVE POINTER

;GET NUMBER

;GET HEX CONVERSION
;SAVE POINTER

;ADD HEX SIGN

;PRINT

;PRINT 4 HEX CHARACTERS

sNUMBER HOLDER
sSAVE POINTER

PDOS 2.4 DOCUMENTATION

SII=ITSTS===T

CHAPTER 5 PDOS ASSEMBLY PRIMITIVES

PAGE 5-69

5.5.3 XCBM - CONVERT UNSIGNED BINARY TO DECIMAL W/MESSAGE

Mnemonic: XCBM
Value: Y2FD8
Format: XCBM
DATA message

Registers: IN R1 = number
OUT (R1) = string pointer

The CONVERT UNSIGNED BINARY TO DECIMAL W/MESSAGE primitive
converts a 16 bit, unsigned number to a character string.
The output string is preceded by the string whose address
immediately follows the cell. The string can be up to 24
characters in length and is terminated by a null character.
The number to be converted is passed to XCBM in register R1.
Register R1 is also returned with a pointer to the
converted character string 1located in the monitor wWork
buffer. Leading 2eros are suppressed and the result ranges
from 0 to 65535.

Possible Errors: None

SAVE
MES1

MOV aNUMB,R1
XCBM

DATA MES1
MOV R1,3SAVE
XPLC

DATA 1234
DATA 0
BYTE >0A,>00
TEXT *NUMB='
BYTE 0

JGET NUMBER
,CONVERT TO PRINT

,SAVE POINTER
JPRINT

;NUMBER HOLDER
;SAVE POINTER

nmnmmns
PDOS 2.4 DOCUMENTATION CHAPTER 5 PDOS A§SEHBLY'PRIH1TIVES PAGE 5-70
sEz=gegEnsss:

5.5.4 XCDB — CONVERT DECIMAL TO BINARY

Mnemonic: XCDB
Value: Y2F0D9
Format: XCDB MOV @PTR,R1 JGET STRING POINTER
JL no number MOV 8DFPZ,R3 JGET 2ND DEFAULT
JH number Xcos ,CONVERT
JEQ number W/o null delimiter "JL ERROR ;NO NUMBER
JH CONT ;0K
Registers: IN (R1) = string pointer CI RO,>2C00 ,COMMA DELIMITER?
JNE ERROR ;N, ERROR
OUT RO = delimiter MOV R2,R1 ;Y, GET NEXT NUMBER
R1 = number MOV R1,R3 ,SAVE FIRST RESULT
(R2) = updated string pointer XCDB ;CONVERT ZND NUMBER
JL ERROR ,NO NUMBER
The CONVERT DECIMAL TO BINARY primitive converts an ASCII JEQ ERROR JONLY 2 PARAMETERS
string of characters to a 16 bit, 2's complement number. MOV R1,RO JOK, SHAP R1,R3
The result is returned in register R1 wWhile the status MOV R3,R1
register reflects the conversion results. MOV RO,R1
*
XCDB converts signed decimal, hexadecimal, or binary CONT cees " ;R1=1ST, R3=2ND
numbers. Hexadecimal numbers are preceded by "»" and binary
numbers by "%". A "-" indicates a negative number. There PTR DATA PTRS ,STRING POINTER
can be no embedded blanks. DFP2 DATA 100 J2ND PARAMETER DEFAULT

A LOW status indicates that no conversion wWas possible.
Register RO is returned wWith the first cheracter and
register R2 points immediately after it.

A HIGH status indicates that a good conversion has been
made, and the result is found in register R1. Register R2
is returned with an updated pointer and register RO is set
to zero.

A EQUAL status indicates that a conversion was made but the
ASCI1 string was not terminated With a null character. The
resuit is returned in register R1 and the non-numeric,
non-null character is returned in register RO. Register R2
has the address of the next character.

Possible Errors: None

PD0S 2.4 DOCUMENTATION CHAPTER 5 PDOS ASSEMBLY PRIMITIVES PAGE 5-71

5.5.5 XGNP - GET NEXT PARAMETER

Mnemonic: XGNP
Value: Y2FDO
Format: XGNP
L =) No parameter
EQ =) Null

H =) parameter
Registers: OUT (R1) = parameter

The GET NEXT PARAMETER primitive parses the monitor buffer
for the next command parameter. The routine does this by
maintaining a current pointer into the buffer (MIOP) and @
parameter delimiter (MDEL).

A parameter is a character string delimited by a space,
comma, period, or null. If a parameter begins with a left
parenthesis, then all parsing stops until a matching right
parenthesis or null is found. Hence, spaces, commes, and
periods sre passed in a perameter when enclosed in
parentheses. Parentheses may be nested to any depth.

A LOH status is returned if the last parameter delimiter 1is
@ null or period. XGNP does not parse past e period. In
this case, register R1 is returned with a zero.

An EQUAL status is returned if the last parameter delimiter
is a comma and no parameter follows. Register R1 is

returned pointing to a null string.

A HIGH status is returned if a valid parameter is found.
Register R1 then points to the parameter.

Possible Errors: None

SPAC MOV 9FDL(9),RO ,GET SYSTEM DISK #

SRL RO,8 ,POSITION
XGNP ,GET PARAMETER, OK?
JLE SPACO2 ;N, USE DEFAULT
XCDB Y, CONVERT, OK?
JLE ERR67 ;N, ERROR
MOV R1,RO Y
*
SPACO2 XSZF ,GET DISK SIZE
XERR ,PROBLEM

vess

.ASM SOURCE,BIN LIST ERR.SP
.CT (ASM SOURCE,BIN),?5,,3
.00 ((DO DO),D0)-

.LS.LS

.ASM SOURCE, , ,ERR

SESSE TR sR RN
PDOS 2.4 DOCUMENTATION CHAPTER ‘6 PDOS ASSEMBLY PRIMITIVES PAGE 5-72
: T :

