PDOS 2.4 DOCUMENTATION . CHAPTER 3 PDOS PAGE 3-1

g
CHAPTER 3
PDOS

The PDOS operating system 1is described here in detail.
There are four main sections of PD0OS; namely, the kernel,
the file management module, the command line interpreter or

monitor, and the floating point package.
3.1 PO0S KERNEL .o eevveevvnereranvacesononnnnconssossnnnes 3-2
3.1.1 PD0S TASK. ..ivoeeeeereecnoennnconnnsssannne 3-2
3.7.2 MULTI-TASKING....0vuevovesncscosvesansassoan 3-4
3.1.3 SYSTEM SERVICES....0vevnvacesnnnnss ceresans 3-7
3.1.4 PDOS CHARACTER I/0...cccvvvvrrvnacnncaoanns 3-8
3.1 B EVENTS. ... iiiiiiierrnnecsnsensonnancennes 3-12
3.1.6 TASK COMMUNICATION.....oovvvvrecennnnnnnn. 3-14
3.1.7 TASK SUSPENSION.coveenrncorennnanennss 3-16
3.1.8 MULTI-PAGING....covrvresrresansacannncness 3-16
3.1.9 INTERRUPTS. ... ccvvrrueecernssnncncnnnnnons 3-17
3.2 PDOS FILE MANAGEMENT......ccovvvvevennerarnnnconcacs 3-18
r 3.2.1 PDOS FILE STORAGE.....cccvuevncorcaccnnnns 3-18
3.2.2 FILE NAMES. ... 0cveesncccsrenssnsscnncnnnes 3-20
3.2.3 DIRECTORY LEVELS.....ooeverrunncnnaneanans 3-21
3.2.4 DISK NUMBERS. ...vvvuvecasnocecnnsssnnnnen 3-21
3.2.5 FILE ATTRIBUTES......coceeeerererrennncnnss 3-22
3.2.6 TIME STAMPING..... Ceeesesisessasennnnennes 3-24
3.2.7 PORTS, UNITS, AND DISKS.....cevevennvennas 3-24
3.3 PDOS MONITOR....ocvvvenuosecocanncnssaconsonnsascans 3-25
3.4 FLOATING POINT MODULE....ccvvarrenecsnrcansnsscnncss 3-26

PDOS 2.4 DOCUMENTATION B CHAPTER 3 PDOS : PAGE 3-2

3.1 PDOS KERNEL

The PDOS kernel is the multi-tasking, real-time nucleus of PDOS kernel:
the PDOS operating system. Tasks are the components
comprising a real-time application. It is the main
responsibility of the kernel to see that each task is
provided with the support it requires in order to perform
its designated function.

Multi-tasking, multi-user scheduling
System clock

Memory allocation

Task synchronization

Task suspension

Event processing

Cheracter 1/0 including buffering
Support primitives

.

The main responsibilities of the PD0S kernel are the
allocation of memory and the scheduling of tasks. Each task
must share the system processor wWith other tasks. The
operating system saves the task's context when it is not
executing and restores it again when it is scheduled. Other
responsibilities of the PDOS kernel are maintenance of a 24
hour system clock, task suspension and rescheduling, event
processing (including hardware interrupts), character
buffering, and other support utilities.

DO N0 WwN o
. .« .

3.1.1 PDOS TASK

A PDOS task is defined as a program entity which can Memory
execute independently of any other program if desired. It Task List

is the most basic unit of software wWithin an operating e Task #0
system. A user task consists of an entry in the execution Task #0---)-=-)-—=)===) =v——eem—n== .
task 1ist, a Wworkspace, a task control block, and a user Task #1-->. { Workspace |
program space. Task #2 (R9)=) | mmmmmm e,
! Task }
{ Control |
] []
] !

s

v
v
The task 1ist is used by the PDOS kernel to schedule tasks. v
A task 1list entry is 20 bytes long and consists of a v
page/count, task number, task control block pointer, v @200(9)=}-—----———- !
Workspace pointer, program counter, status register, v
floating point accumulator, and error return. (A 102 system v
also includes 24 bytes of mapping information.) v

v
The user Workspace is the first 32 bytes of the task v
memory. All registers are available for use by a task if v
desired. v

v

v

Inmediately following the workspace is the task control
block. This block of memory consists of three buffers,
three additional workspaces, and parameters peculiar to the ! H
task. Register R9 of the user workspace points to the |
status block when the user program space is entered. The | {
task parameters may be referenced by a user program but care ceses

must be taken that PDOS is not crashed! The task control

block variables are displacements beyond register R9 and are

defined in FIGURE 3.1.

e et S SR

POOS 2.4 DOCUMENTATION ‘ CHAPTER 3 PDOS

(3.1.1 PDOS TASK continued)

The user program space begins immediately following the
task control block. Relocatable 9900 object programs or
BASIC tokens are loaded into this area for execution. Task
memory 1is allocated in either 1k’ or 4k byte increments
depending upon the type of system. The total task overhead
is »220 or 542 bytes. This leaves »>1E0 or 480 bytes
available for a user program in a minimal 1k byte task.

From the time a task is coded by a programmer until the
task is destroyed, it is in one of four task states. Tasks
move among these states as they are created, begin
execution, are interrupted, wait for events, and finally
complete their functions. These states are defined as
follows:

1. Undefined A task is in this state before it is
loaded into the task list. It can be a
block of code in a disk file or stored
in memory.

2. Ready When a task is 1loaded in memory and
entered in the task 1list but not
executing or suspended, it is said to be
ready.

3. Running A task is executed when scheduled by
the PDOS kernel from the task list.

4. Suspended When a task is stopped pending an event
external to the task, it is said to be
suspended. A suspended task moves to
the ready or running state when the
event occurs.

A task remains undefined until it 1is made known to the
operating system by making an entry in the task list. Once
entered, a task immediately moves to the ready state which
indicates that it is ready for execution. HWhen the task is
selected for execution by the scheduler, it moves to the run
state. It remains in the run state until the scheduler
selects another task or the task requires external
information and suspends itself until the information is
available. The suspended state greatly enhances overall
system performance.

Task overhead = 542 bytes

4 task states:

. Undefined
. Ready
Running
4, Suspended

w N o

lUndefined] ->- |Ready| (==(==(==(-=(-

e Y S VT P a

) = =

{Running} -->-- |Suspended|

POOS 2.4 DOCUMENTATION CHAPTER 3 PDOS

PAGE 3-4

3.1.2 MULTI-TASKING

Up to sixteen independent tasks can reside in memory and
share CPU cycles. Each task contains its own task control
block and thus executes independently of any other task. A
task control block consists of a main workspace, buffers,
and a PDOS scratch area.

Four parameters are required for any new task generation.
These are:

1) A time interval indicating how long the
task executes before being swapped to
the next task by the system clock -
defined in clock tics. _

2) The task memory requirement in 1k byte
increments.

3) An input/output port for task console
communication.

4) A task command.

Each of the above requirements defeults to a system
parameter. For instance, default time slice is three tics
(3 x 8 milliseconds = 24 milliseconds). Default memory
allocation is 1k bytes and default console port is the
phantom port.

1f a task command is not specified, the new task reverts to
the PDOS monitor. However, if no input is possible (ie.
port 0 or input already assigned), then the nenw task
immediately kills itself. This is very useful since tasks
automatically kill themselves as they complete their
assignments (remove themselves from the task list and return
memory to the available memory pool).

A task entry in the task list queue is 20 to 44 bytes long
and consists of a task number designation, parent task
number, time interval, memory page number, task caontrol
block pointer, program counter, workspace pointer, status
register, floating point accumulator, error register, and 12
mapping registers (PDOS 102). Swapping from one task to the
next is done when the task interval timer decrements to zero
or during an 1/0 call to PDOS. The task interval timer
decrements by one every eight milliseconds.

16 independent time shared tasks

1 tic = 1/125 second

Task defaults

Automatic task termination

Task entry in task list

PO0S 2.4 DOCUMENTATION CHAPTER 3 PDOS

(3.1.2 MULTI-TASKING continued)

Any task may spawn another task. Memory for the new task
is allocated in 1k byte blocks from a pool of available
memory. If no memory is free, the spawning task's onn
memory is used and the parent task's memory is reduced in
size by the amount of memory allocated to the new task.

PDOS maintains a memory bit map to indicate wxhich segments
of memory are currently in use. Allocation and deallocation
are in 1k byte increments. When a task is terminated, the
task's memory is automatically deallocated in the memory bit
map and made aveilable for use by other tasks. Furthermore,
when PDOS prompts for a new command, the memory bit map is
checked for any available memory adjacent to the upper limit
of the task. If more memory is available, it is allocated
to the task and the upper limit of the task 1is extended.
Thus, memory is automatically recovered by the parent task.

“Muiti-user" refers to spaWning neW tasks for additional
operators. Each new task executes programs or even sparns
additional tasks. Such tasks are generated or terminated as
needed. Task 0 is referred to as the system task and cannot
be terminated.

Task memory allocation

Memory bit map

Memory automatically recovered

Multi-user system

PDOS 2.4 DOCUMENTATION

P T Ty T T T T

]

| Mein Workspace

TASK > | RO
R4
R2

R3
R4
R5
R6
R?
R8

R9

R10
RN
R12
R13
R4
R15

- mw we G mE G W Sm G WE W W e W Re e e

——— |

A

!
!
|
l
|
!
|
122222222))> *R9 = 266 byte user buffer
!
!
]
'
[]
J
!
!
!
!

Task Control\

—— /

1

/

' CHAPTER 3 PDOS

PAGE 3-6

Task Status Control Definitions

#>100(9) = CLB - 82 byte monitor command line buffer
3>152(9) = MWB - 32 byte monitor work buffer
#172(9) = CLP - monitor buffer pointer
#174(9) = CMP - monitor commend pointer
9>176(9) = CMD - command buffer delimiter
9>178(9) = MWP - monitor work buffer pointer
$17A(9) = L1H - Tevel 1 workspace

3186(9) = UNT - output unit #

3>188(9) = PRT - input port #

@ 18A(9) = IMP - assigned input message pointer
@ 18E(9) = CNT ~ output column counter

@ 19A(9) = L2HW - level 2 workspace

31BA(9) = L3H - level 3 workspace

3 1DA(9) = SDL - system disk # / directory level
@ 10C(9) = EUM ~ end of user memory pointer

M 1IDE(S) = MMF - memory modified flag

@1E0(9) = ACI - assigned input FILE ID

3 1E2(9) = SPU - output SPOOL unit #

@>1E4(9) = SF1 - output SPOOL FILE ID

3>1E6(9) = CU1 - unit 1 CRU base

@ 1EB(9) = CU2 - unit 2 CRU base

@ 1EA(9) = CSC - clear screen character(s)

@ 1EC(9) = PCC - position cursor characters

9 1EE(9) = ~ 6 monitor TEMP wWords
@ IFA(9) = = $TTA column counter
@ 1IFC(9) = ~ Reserved
NIFE(9) = - Reserved

} €<<c< USER PROGRAM

FIGURE 3.1 TASK CONTROL BLOCK

PDOS 2.4 DOCUMENTATION , __ CHAPTER 3 PDOS

PAGE 3-7

3.1.3 SYSTEM SERVICES

System services are those functions that a task requires of
the operating system while entered in the task list. These
requirements range from timing and interrupt bhandling to
task coordination and resource allocation.

In addition to a variety of system tables, PDOS provides
several time keeping capabilities. These include the
current time of day and date. Also, a 32 bit counter cen be
used for various delta time functions.

Hardware interrupts are processed by the kernel or passed
to wuser tasks. Tasks can be suspended pending the
occurrence of an interrupt and then be rescheduled when the
interrupt occurs. Interrupts such as the interval timer and
character input or output are handied by the kernel itself.

Task coordination is an integral part of real-time
applications since many functions are too large or complex
for any single task. The PDOS kernel uses common or shared
data areas, called mailboxes, along wWith a table of
preassigned bit veriables, called events, to synchronize
tasks. A task can place a message in & mailbox and suspend
itself on an event waiting for a reply. The destination
task is signaled by the event, 1looks in the mailbox,
responds through the mailbox, and resets the event signaling
the reply.

System resources include the processor itself, system
memory, and support peripherals. The PD0OS kernel provides
primitives to create and delete tasks from the task 1list.
Memory is allocated and deallocated as required.
Peripherals are generally a function of the file manager but
are assigned and released via system events. Device drivers
coordinate related 1/0 functions, interrupts, and error
conditions. A1l of these functions are available to user
tasks and thus tasks may spawn tasks and dynamiéa‘lly control
their operating environment.

Other support utilities contained wWithin the PDOS kernel
include number conversion, command line decoding, date and
time conversions, eand message processing routines.
Facilities are also provided for Jlocking a task during
critical code execution.

System services

Time keeping facilities

Interrupts

Task coordination

System resources

Support utilities

PDOS 2.4 DOCUMENTATION

SETESZIETSSESSERSSESISSS

3.1.4 PDOS CHARACTER I1/0

The flow of character data through PDOS is the most visible
function of the operating system. Character buffering or
type-ehead assures the user that each keyboard entry is
logged, even when the application is not looking for
characters. Character output is normally through program
control (polled I1/0). However, an interrupt driven output
primitive allons maximum data trensfer even though the task
itself may be in a ready or suspended state.

Inputs are through logical port numbers, whereas outputs
are to physical CRU based UARTs (Universal Asynchronous
Receiver/Trensmitters). A logical input port is bound to a
physical UART by the baud port commands and is uniquely
assigned to a task. Meny tasks mey share the same output
UART but must coordinate all outputs themselves.

POOS CHARACTER INPUT

PDOS cheracter inputs come from four dources: 1) user
memory, 2) a PDOS file; 3) a polled 1/0 driver; or 4) a
system input port buffer. The source is dictated by input
variables within the task control block. Input variables
are the Input Message Pointer (IMP(9)), Assigned Console
Input (ACI(9)), and input port number (PRT(9)).

When a request is made by a task for a character and IMP(9)
is nonzero, then a character is retrieved from the memory
location pointed to by IMP(9). IMP(9) is incremented after
each character. This continues until a null byte is
encountered, at which time IMP(9) is set to zero.

If IMP(9) is zero and ACI(9) is nonzero, then a request is
mede to the file manager to read one character from the file

assigned to ACI(9). The cheracter then comes from a disk "

file or an 1/0 device driver. This continues until an error
occurs (such as an END-OF-FILE) at which time the file is
closed and ACI(8) 1s cleared.

1f both IMP(9) and ACI(9) are zero, then the 1logical input
port buffer selected by PRT(9), is checked for a character.

1f the buffer is empty, then the task is automatically .

suspended until a character interrupt occurs.

POOS character input flow is summarized by Figure 3.2.

CHAPTER 3 PUDS
================m

PAGE 3-8

Interrupt driver character type-ahead

Program control output

Inputs through logical ports

Character inputs:

ACI

FILEN

PRT

1. User memory

* Qutputs through physical CRU bases

2. PDOS disk file
3. PDOS 1/0 device driver
4, System input port buffer

EQU >18A
LI R1,CMMD
MOV R1,3IMP(9)

TEXT 'MESSAGE'
BYTE 0

EQU >1EO
LI R1,FILEN
XS0P

XERR
MOV R1,3ACI(9)
TEXT ‘INDATA'
BYTE O

EQU >188
LI R1,3
MOV R1,3PRT(9)

;INPUT MESSAGE POINTER
;POINT TO COMMAND
;SET INPUT POINTER

,ASSIGNED CONSOLE INPUT
JPOINT TO FILE NAME
JOPEN FILE

sSET CONSOLE INPUTS

;INPUT PORT NUMBER
;READ CHARACTERS FROM
; PORT #3

PDOS 2.4 DOCUMENTATION

PAGE 3-9

1. MEMORY MESSAGE

MSG TEXT 'HELLO' >>>3>32>3>3>53>> | (MSP)! INP(9)

BYIE O

2. PDOS FILE W/TYPE=AC

TASK CONTROL BLOCK

DO:AC »>> [CHANNEL BUFFER]

3. PDOS 1/0 DRIVER

$TT1 >>>> [POLLED 1/0 DRIVER]

v
v

#3232 »

L)

L)

A

4. SYSTEM INPUT PORT BUFFER

KEYBOARD INPUT PORT
v CRUTB BUFFERS
v B . . .
v { »080 | {BUF #1)
9802 UART >> | »180 | »> |BUF #2} »
' { JE00 | {BUF #3}
| PA00 | |BUF #4]
| YA40 | |BUF 85
| A80 | |BUF 88|
! JACO | {BUF #7}
{ »B00 | {BUF #8|

_— - - .- - we - m- w= = me w- —- -

! |
PN
| \
! \
| \
| \
! \
H \
| \

FILID} ACI(9) >>>+>>> INPUT
! /
! /
! /
/ /
! /
! /
H /
Vo
17
1/
1/
2 |} PRT(9)

H
!
!
[
i
H
!

—— ww me= m- - e o mo —e- - we me -

NOTES: 1) CRUTB binds a physical 9902 UART to a logical

port number.

2) 9902 UART baud rates and CRUTB entries are defined
by the 'BP' and 'BAUD' commands (XBCP primitive).

3) XGCC gets characters from input port buffers only.

PIGURE 3.2 PDOS CHARACTER INPUTS

====ssssessssssssmssosssossssssssrsEssssoosissosssosesoosccreseEpiEgigEescnaes

POOS 2.4 DOCUMENTATION CHAPTER 3 PRO§

SIITSESSSSSSSSISSSSSSSSISS

(3.1.4 PDOS CHARACTER 1/0 continued)

PDOS CHARACTER OUTPUTS

PDOS character outputs are directed to various destinations
according to output variables in the task control block.
Output varisbles ere the output unit (UNT(9)), spooling unit
(SPU(9)), spooling file ID (SFI(9)), unit 1 CRU base
(U1C(9)), and unit 2 CRU base (U2C(9)). The output unit
selects the different destinations. (This is NOT to be
confused with disk unit numbers.)

When an output primitive is called, the task output unit is
ANDed wWith the task spooling output unit. If the result is
nonzero, then the character is directed to the file manager
and wWritten to the file specified by SFI(9). The output
unit is then masked with the complement of the spooling unit
and passed to the unit 1 and unit 2 processors.

Units 1 and 2 are special output numbers. Unit 1 is the
console output port assigned when the task was created.
Unit 2 is en optional output port that is assigned by the
user task in addition to unit 1. Unit 2 is set by the baud
port commands.

If the 1 bit (LSB) is set in the masked output unit, then
the character is directed to a 9902 UART with CRU base
U1C(9). Likewise, if the 2 bit is set in the masked output
unit, then the character is output to the U2C(9) CRU based
9802 UART.

In summary, the bit positions of the output unit are used
to direct output to various destinations. More than one
destination can be specified. Bits 1 and 2 are predefined
according to U1C(9) and U2C(9) variables within the task
control block. Other unit bits are used for outputs to
files and device drivers. Thus, if SPU(9)=4 and UNT(9)=7,
then output would be directed to the file manager via SFI(9)
and to two 9802 UARTS as specified by CRU bases in U1C(9)
and U2C(9). (See Figure 3.3.)

asPU(8) = 000D 0000 0000 0100
3UNT(9) = 0000 0000 0000 0111
171
1"
File aSFI(9)___///
8802 au2c(8)___//
9802 3U1C(9)___/

PAGE 3-10
UNT EQU >186 ;OUTPUT UNIT
SPU EQU »ME2 ;OUTPUT SPOOLING UNIT
SFL EQU >1E4 ;OUTPUT SPOOL FILE ID
U2t EQU >1EB ;UNIT 4 CRU BASE
U EQU >1E8 ;UNIT 2 CRU BASE
-

LI R1,FILEN ;GET FILE NAME

XS0P ;OPEN FILE

XERR
MOV R1,3SFI(8) ;SET SPOOL FILE ID
CLR R2 ;CLEAR COUNTER

MOV aC4,aSPU(9) ,SET SPOOL UNIT TO 4

LOoOP MOV RZ,R1
MOV R1,3UNT(8) SELECT UNIT

XCBM ;CONVERT NUMBER
DATA MESO1
XPLC ;OUTPUT MESSAGE
INC R2 ; INCREMENT R2
CI R2,8 ;8 TIMES?
JLT LOOP N
eova JY
c4 DATA 4
FILEN TEXT 'OFILE’ ;OUTPUT FILE NAME
BYTE O
MESD1 TEXT 'OUTPUT MESSAGE #'
BYTE O
UNIT 1 = OUTPUT MESSAGE #1

OUTPUT MESSAGE #3
OUTPUT MESSAGE #5
OUTPUT MESSAGE #7

UNIT 2 = OUTPUT MESSAGE #2
OUTPUT MESSAGE #3
OUTPUT MESSAGE #6
OUTPUT MESSAGE #7

OFILE = OUTPUT MESSAGE #4-
OUTPUT MESSAGE #5
OUTPUT MESSAGE #6
OUTPUT MESSAGE #7

)

SSIIISZEISI[Z==EEE=E=S

\ /

PDOS 2.4 DOCUMENTATION ..CHAPTER '3 PDOS PAGE 3-11
P =
| o
XPMC £ €CLLLLLLLCCCes | 2 1 UNT(9)
XPLC v H !
XPBC v ! !
v Vo eCeeecec | 4) SPU(9)
v v v ! H
v 1. SPOOLing UNIT v Vv) H
D v V_V__ ! | SFI(9)
A v / \ ! 1
T v23352229025¢ IF (UNTASPU) »>>>>2>>>ISFI !>>>»>>>> [PDOS FILE]
A v \ v.v../ H } © or
v vV v ' ! [1/0 DRIVER]
F v v_V__ . ! !
L v { unt=-SPUAUNT | H H
0 v | ————y et H H
H v v ! !
v v 2. Output UNIT 1 v { !
v Vv V. H 1 U1C(9)
vV Vv / \ H 1"
V2323399333333 IF (unt*1) 33333>>>1>080!5>5>>>>> [8802 UART]
v \ v / ! !
v v ! !
v 3. Output UNIT 2 v ! !
v v ! + u2c(9)
v / \ H H
3339333900939 ¢ IF (unt*2) 35>>3332>5}>180]>>>>>>>> [9802 UART]
! !
i i

Notes: UNIT 1 8802 = (-SPU ~ UNT) ~ 1
UNIT 2 9802 = (-SPU ~ UNT) ~ 1
PDOS FILE = (SPU ~ UNT)

FIGURE 3.3 PDOS CHARACTER OUTPUTS

SEZTSESISSSIESSIRSSSSSSISSSSS

PDOS 2.4 DOCUMENTATION CHAPTER 3 PIDS

3.1.5 EVENTS

Tasks conmunicate - by exchanging data through maijlboxes.
Tasks synchronize with each other through events. Events
are single bit flags that are global to all tasks.

There ere four types of event flags in PD0S: hardware,
software, softwere resetting, and system eventa. System
events are further divided into input, output, timing,
driver, end system resource events. System events sre
predefined softnare resetting events that are set during
PDOS initialization.

1) 1-15 Events 1 through 16 are hardware
events. They correspond to interrupt
levels 1 through 15 of the TMS9S00 CPU.
When a task suspends itself pending a
herduare event, the system TMS9901 mask
is enabled allowing the interrupt to
occur. hkhen the interrupt does occur,
the task 1list is searched for the
suspended task. If the current task has
not locked itself in the execution
state, then the new task 1is awakened,
swapped 1in, and immediately begins
executing. Otherwise, the suspended
task is set in the ready state and
executes when scheduled. In either
case, PDOS disables the interrupt in the
system TMS9801, thus allowing the
awakened task to acknowledge the
interrupt. Only one task responds to
any single hardware event.

2) 16-63 Events 16 through 63 are software
events. They are set and reset by tasks
and not changed by any PDOS system
function. A task can suspend itself
pending a software event and then be
rescheduled when the event is set. One
task must take the responsibility of
resetting the event for the sequence to
occur again.

3) 64-94 Events 64 through 94 are like the
normal software events except that PDOS
resets the event whenever a task '
suspended on that event is rescheduled.

Thus, one and only one task is
rescheduled when the event occurs.

PAGE 3-12

Events synchronize tasks

4 types of event flags:
1-16 = Hardware events
16~63 = Software
64-94 = Software resetting
95-127 = Systenm

* 415 = Hardware events

16-63 = Software events

84-94 = Software resetting events

zzzz=szzzzzzzas
PDOS 2.4 DOCUMENTATION

CHAPTER 3 PDOS

PAGE 3-13

(3.1.5 EVENTS continued)

4) 85-103

5) 104-111

6) 112-115

7) 116-127

Events 95 through 103 correspond to
input ports 0 through 8. A task
suspends itself on an input event if a
request 1is made for a character end the
buffer is empty. MWhenever a character
comes into an interrupt driven input
port buffer, the corresponding event is
set.

Events 104 through 111 are used when
doing interrupt driven character output
(XIPL) and signal that a null character
has been encountered and the output is
completed. Thus a task could send a
complete line to a terminal and either
continue executing or suspend itself
until the line is printed.

Events 112 through 116 are timing
events and are set automatically by the
PDOS clock module according to intervals
set by the BFIX utility. Event 112 is
measured in tics, while events 113, 114,
and 115 are in seconds. The maximum
time interval for event 112 is 525
seconds or 8.7 minutes. Events 113,
114, and 115 have & maximum interval of
65536 seconds or approximately 98.2
hours. A task suspended on one of these
events 1is regularly scheduled on a tic

or second boundary.

Events 116 through 127 are for system
resource allocation. Drivers and other
utilities requiring ownership of a
system resource synchronize on these
events. These events are initially set
by PDOS, indicating the resource is
available. One and only one task at a
time is allowed access to the resource.
When the task is finished wWith the
resource, it must reset the event thus
allowing other tasks to gain access.

95-103 = Input port events

104-111 = Output complete events

112 = 1/5 second event
113 = 1 second event

114 = 10 second event
115 = 20 second event

116 = $TTA active
117 = $LPT active
118-125 = To be assigned
126 = Error message disable
127 = System utility

====TTTTTTTTTIZZTTRSISTSISE N T S S S S S S S SR I TSI SIS SIS SRRSS RIS ===zRmas
PDOS 2.4 DOCUMENTATION CHAPTER 3 PDOS -PAGE 3-14
o e .

3.1.6 TASK COMMUNICATION

Meny different methods are available for intertask
communication in P0O0S. Most involve a mailbox technique
where semaphores are used to control message traffic.
Specially designed memory areas such as MAIL, COM, and event
flags allow high level program communications. PDOS
maintains eight message buffers for queued message
communications between tesk console terminals. More
sophisticated methods require program arbitrators and
message buffers as loaded by the ALOAD utility. A few
methods are defined below.

MAIL array

The MAIL array is a permanent 60 byte
memory buffer accessible by assembly
language programs and PDOS BASIC as the
singly dimensioned array MAIL[0] through
MAIL[9]. The array is located at memory
addresses 2204 through »223F. This
arrsy is never cleared even during PDOS
initialization. (See 10.59 MAIL.)

COM array

The COM array (COMmon array) is a
singly dimensioned array which is used
by PDOS BASIC to preserve data during
RUN, NEW, and program chaining. In
addition, COM is used to pass and return
parameters to assembly language
subroutines. The COM array is defined
Within each task and is neither
permanent nor resident at a fixed memory
address. (See 10.13 COM.)

Absolute data movement

Absolute memory locations are
referenced by using the MEM functions.
The MEM function moves byte data; MEMN
moves words; and MEMP moves 6 byte BASIC
variables. MEMP passes data between
different memory pages or to a page
external to the current task (102
system). (See 410.61 MEM through 10.63
MEMP.) ‘

Mailbox communication

MAIL[O] - MAIL[S]

COM[0] - COM[9]

MEM[adr]=data
MEMH[adr]=data
MEMP[edr ,page]=data

"

L%

Szzzzz=zzz==zs : e ==
PDOS 2.4 DOCUMENTATION -~ CHAPTER 3 PDOS PAGE 3-15
ss=s=smmsnes

(3.2.6 TASK COMMUNICATION continued)

Event flags
Event flags are global system memory 127 Event flags
bits, common to all tasks. They sre
used in connection With task suspension EVENT 30
or other mailbox functions. Events 1
through 156 are defined as harduare IF EVF[30]

events because they correspond to the 15
levels of interrupt of the TMS9900.
Events 16 through 63 are for software
communication flags. Events 64 through
127 automatically reset when a suspended
task is rescheduled. Events 96 through
103 are input events; 104 through 111
are output events; 111 through 115 are
timing events; and 116 through 127 are
system events. (See 10.28 EVENT and

10.29 EVF.)
Message buffers
PDOS maintains eight 60-byte message 16 50-byte buffers

~ buffers for intertask communication. A
' message consists of up to 50 bytes plus
a destination task number. More then
one message may be sent to any task.
The messages are retrieved and displayed
on the console terminal whenever the
destination task issues a PDOS prompt or
by executing a Get Task Hessage
primitive (XGTM). The displayed message
indicates the source task number.

Memory Mai1box

The utilities ALOAD and FREE are used Memory Mailbox
to permanently allocate system memory

for non-tasking data or program storage.

Memory allocated in this wWay can be

used for mailbox buffers as well as

handshaking semaphores or assembly

programs. (See 13.1 ALOAD and 13.20

FREE.)

s=sssssssssssssssssssozsaas

3.1.7 TASK SUSPENSION

Any task can be suspended pending a hardware or software
event. Hardwere events (1-15) correspond to the TMS9800
interrupt levels. Software events (16-127) are systen
memory bits global to all tasks. A suspended task does not
receive any CPU cycles until the desired event occurs. A
task 1is suspended from BASIC by using the WALT commend, or
from an assembly language program by the XSUL primitive. A
suspended task is indicated in the LIST TASK (LT) commend by
a minus event number being listed for the task time

parameter.

When the event occurs, the task is rescheduled and resumes
execution. If the event is a hardware interrupt (events 1
through 16), then the task is immediately rescheduled,
overriding any current task. If the event is a software
event (16 through 127), then the task begins execution
during the normal swapping function of PDOS. (See 5.2.18
XSUL - SUSPEND UNTIL INTERRUPT and 10.106 WAIT.)

3.1.8 MULTI-PAGING

Associated with each task is a 3 bit memory page number.
The page number is output on the CRU bus at the beginning of
each task time slice. This number is designed to select one
of eight 32K byte memory pages end deselect all others.
Thus, a system can hendle up to eight memory planes or 256K
bytes of user task memory.

Each memory plane has its own select logic. The memory
addresses range from 6000 to)OFFF. The page select bits
are at CRU base address »>0980.

Intertask communication between different memory planes -

must be through the common memory plane from >0000 to 6FFF.
The IMP utility installs a new memory page by setting the
associated bits in the memory bit map. The MEMP function of
PDOS BASIC is used to reference data in another page.

*

s o e oo s a0 e £ e

B e o
PDOS 2.4 DOCUMENTATION CHAPTER 3 PROS

PAGE 3-16

Tesk suspended pending event

LT

TASK PAGE TIME TB WS PC SR ...

*0/0

10 0
2/0 0

0 3

242A2 >441C >0654 >040F ...

-30 >8AAZ »4AB2 >1040 DOCF ...
-5)52A2 5282 »292E JCAOF ...

Hardware event response immediate

Softnare event response slower

»0000
»2000
4000
6000
Y8000
oo
»C000
¥EQ00

dFFFF

-—— m— - —- w- m. me= mE m- w- we —— e —- - --

PDOS

BASIC

Page 0

ik

]
'
:
]
!
3
]
]
!
!
!

i
i
i
Zi
i
i
i
!

i

I -
H .
| 8 x 32K = 256K bytes

- - - — - —— e —— ——

)

PDOS 2.4 DOCUMENTATION CHAPTER 3 PDOS

szszssssmzIssmssosRsspzesson T

3.1.9 INTERRUPTS

PDOS supports user interrupt routines for levels 1, 2, and
9 through 15. Level 3 is reserved for the system clock.
Levels 4 through 8 are dedicated to user 9802 terminal 1/0.
Uninitialized TMSS8802 ports generate spurious. interrupts.
POOS sets the CPU's interrupt mask to level 5 and enables
interrupts 3 through 6 at the system 9901. This allons the
system clock (level 3), system console (level 4), end aux
port (level §) to interrupt.

Before setting a new interrupt level wWith the INTERRUPT
MASK command (IM), caution should be taken to ensure that
all TMS9902's in the system have been reset and defined with
the BAUD PORT (BP) command. Otherwise, the system hangs on
spurious interrupts! The interrupt mask must always be
greater than level 3 for system tasking and terminal access
to work.

If a TMS9902 is installed on level 7 or 8, the
corresponding mask bit must be enabled in the system 9801.
This mask is located at memory location >0094 (>00B4 for
102) and is changed by the BFIX utility.

Levels 1-2 = High priority user interrupts
Level 3 = System clock

Levels 4-8 = 9902 console terminal 1/0
Levels 9-15 = User interrupt routines

PDOS 2.4 DOCUMENTATION CHAPTER 3 P05
====zzc=z====zz ==sszzzsszstitpsssiasses

3.2 PDOS FILE MANAGEMENT

The PDOS file management module supports sequential,
random, read only, and shared access to nemed files on a

secondary storage device. These 1low overhead file
primitives use a linked, raendom access file structure and a
logical sector bit map for allocation of secondary storage.
No file compaction is ever required. Files are time stamped
with date of creation and last update. Up to 32 files can
be simultaneously opened. Complete device independence is
achieved through read and write logical sector primitives.

3.2.1 PDOS FILE STORAGE

A file is @ named string of characters on a secondary
storage device. A group of file names is associated
together in a file directory. File directories are
referenced by a disk number. This number is logically
associated With a physical secondary storage device by the
read/write sector primitives. All1 data transfers to and
from a disk number are blocked into 256 byte records called
sectors.

A file directory entry contains the file name, directory
level, the number of sectors allocated, the number of bytes
used, a start sector number and dates of creation and last
update. A file is opened for sequential, random, shared
random, or read only access. A '$’' preceding a file name
designetes the file to be a system 1/0 driver. A driver
congists of up to 262 bytes of position independent binary
code. It is loaded into the channel buffer whenever opened.
The buffer then becomes an assembly program that is
executed when referenced by 1/0 calls.

A sector bit map is maintained on each disk number.
Associated with each sector on the disk is a bit which

indicates if the sector is allocated or free. Using this .

bit map, the file manager allocates (sets to 1) and
deallocates (sets to 0) sectors when creating, expanding,
and deleting files. Bad sectors are permanently allocated.
When a file is first defined, one sector is initially
aliocated to that file and hence, the minimum file size is
one sector.

PAGE 3-18

File management module

Sequential, random, read only,
and shared file access

File, file directory
Disk number

256 byte blocked data transfers

File directory entry

Sector bit map

PDOS 2.4 DOCUMENTATION

CHAPTER 3 PDOS

PAGE 3-19

(3.2.1 POOS FILE STORAGE continued)

A PDOS file is accessed through an 1/0 channel called a
file slot. Each file slot consists of a 32 byte status area
and an associated 256 byte sector buffer. Data movement is
always to and from the sector buffer according to a file
pointer maintained in the status area. Any reference to
data outside the sector buffer requires the buffer to be
Written to the disk (if it Was altered) and the new sector
to be read into the buffer. The file manager maintains in
the file slot status area current file information such as
the file pointer, current sector in memory, END-OF-FILE
sector number, buffer in memory flag, and other critical
disk parameters required for program-file interaction.

Up to 32 files may be open at a time. Keeping all sector
buffers resident would require prohibitive amounts of system
memory. Therefore, only four sector buffers are actually
memory resident at a time. The file manager allocates these
buffers to the most recently accessed file slots. Every
time a file slot accesses data Within its sector buffer,
PDOS checks to see if the sector is currently in memory. If
it 1is, the file slot number is bubbled to the top of the
most recently accessed queue. If the buffer has been
previously rolled out to disk, then the most recently
accessed queue is rolled down and the new file slot number
is placed on top. The file slot number rolled out the
bottom references the fourth last accessed buffer which is
then wWritten out to the disk. The resulting free buffer is
then allocated to the calling file slot and the former data
restored.

Files requiring frequent access generally have faster
access times than those files which are seldom accessed.
However, all file slots have regular access to buffer data.

PDOS allocates disk storage to files in sector increments.
A1l sectors are both forward and backward linked. This
facilitates the allocation and deallocation of sectors as
well as random or sequential movement through the file.

PD0OS files are accessed in either sequential or random
access mode. Essentially, the only difference between the
two modes is honw the END-OF-FILE pointers are handled when
the file is closed. 1f a file has been altered, sequential
mode updates the EOF pointer 1in the disk file directory
according to the current file byte pointer, whereas the
random mode only updates the EOF pointer if the file has
been extended.

PDOS file slots

Sector buffer and status area

32 simultaneously OPENed files

4 active buffers

Most-recently-accessed resident
buffer allocation

Frequent access = fast access

Forward and backward linked sector
file storage

Sequential or random access

S ——

POOS 2.4 DOCUMENTATION

ST ESSERENNEassS ETTomsondmtsess

(3.2.1 PDOS FILE STORAGE continued)

Two additional variations of the random access mode allow
for shared file and read only file access. A file which has
been opened for shared access can be referenced by two or
more different tasks at the same time. Only one file slot
and one file pointer are used no matter how many tasks open
the file. Hence, it is the responsibility of each user task
to ensure data integrity by using ‘the lock file or lock
_ process commands. The file must be closed by all tasks when

the processing is completed.

A read only random access to a file is independent of any
other access to that file. A new file slot is alnays
allocated when the file is read only opened and a wWrite to
the file is not permitted.

3.2.2 FILE NAMES

PDOS file names consist of an alpha character (A-Z or a-2)
folloned by up to seven additional characters. An optional
one to three character extension is seperated from the file
name by a colon (:). Other optional parameters include &
semi-colon (;) followed by a file directory level aend a
slash (/) followed by a disk number. The file directory
level is a number ranging from 0 to 265. The disk number
ranges from 0 to 127. '

A file name beginning with a dollar sign is processed by
POS as a system 1/0 device driver. Entry points are
provided directly into the chennel buffer for OPEN, CLOSE,
READ, WRITE, and POSITION commends.

1f the file name is preceded by a '#', the file is created
(if undefined) on all open commands except for read only
open. MWhen passing a file name to a system primitive, the
character string begins on a byte boundary and is terminated
with a null.

Special characters such as a period or a space may be used
in file names. However, such characters may restrict their
access. The command line interpreter uses spaces and
periods for parsing & command line.

oom o > 20 1 023 o e .o e sn

Shared random, read only rendom eccess

Shaered random access

Read only random access

FILE
A1234567:890,255/ 127
PROGRAM/3

FILEZ;10

$T70,$TTA,$LPT,$CRD

Auto define
.CF TEMP,#TEMP2/5

FILEN TEXT °‘FILE1/4'
BYTE O

e

PDOS 2.4 DOCUMENTATION CHAPTER 3 PDOS

PAGE 3-21

3.2.3 DIRECTORY LEVELS

Each PDOS disk directory is soft partitioned into 256
directory levels. Each file resides on a specific level,
which facilitates selected directory 1listings. You might
put system commands on level O, procedure files on level 1,
object files on level 10, listing files on level 11, and
source files on level 20. A1l files are global with respect
to a disk directory and can be accessed without referencing
the file level.

A current directory level is maintained and used as the
default level in defining a file or listing the directory
when no directory level is specified. File names are not
unique to a level, hence the same file name cannot be used
twice in any one disk directory.

3.2.4 DISK NUMBERS

A disk number is used to reference @ physical secondary
storage device and facilitates hardware independence. All
data transfers to and from a disk are blocked into 256 byte
records called sectors. ' '

The range of disk numbers is from 0 to 127. Several disk
numbers may share the same secondary storage device. Each
disk can heve a maximum of 65280 sectors or 16,711,680
bytes.

A default disk number is assigned to each executing task
and stored in the task control block. This disk number is
referred to as the system disk and any file name which does
not specifically reference a disk number, defaults to this
parameter.

Some utility progrems meke use of the system disk for
temporary file storage. By not specifying the disk
parameter, the program becomes device independent and
defaults to the current system disk.

When a task is created, the parent task's disk number and
directory level are copied into the task control block of
the new task.

256 directory levels

LV
LEVEL=1

.SY 1
.SY
SYS DISK=1

smEsesTENEzszeszsoTI=sooIz

POOS 2.4 DOCUMENTATION CHAPTER 3 FDOS PAGE 3-22
L S S —

3.2.5 FILE ATTRIBUTES

Associated with each file are file attributes. File 8 defined file types
attributes consist of a file type, storage method, and
protection flags. These parameters are maintained in the
file directory and used by the PDOS monitor and file

manager.

The file type is used by the PDOS monitor in processing the

the file. For instence, a file typed as 'EX' (a PDOS BASIC

file), invokes the BASIC interpreter, loads the file, and

begins execution wWith the first line number. A file typed

as ‘0B’ (a 9800 object module), is passed to a relocating Relocatable object only
loader and loaded into memory. If a start address tag is

included at the end of the file, the module is immediately

executed.

The following are legal PDOS file types:

AC - Assign console. A file typed ‘AC’ Batch processes
specifies to the PDOS monitor that all
subsequent requests for console
character inputs are intercepted and the
character obtained from the assigned
file.

BN -~ Binary file. A 'BN' file type has no
significance to PDOS but aids in file
classification.

0B - 9900 tag object file. A1l assembly Must be relocatable object
user defined commands are typed as
object files. This directs the PDOS
monitor to load the file into memory and
execute the program.

SY - System file. A ‘'SY' file 1is generated Generated from OB file
from an ‘OB’ file. TI9900 object is
condensed into a smaller and faster
loading format by the ‘SYFILE' utility.

BX - PDOS BASIC binary file. A BASIC program ' SAVEB “FILE"

stored using the °‘SAVEB' command is
Written to a file in pseudo-source token
format. Such a file requires less
memory than the ASCII LIST format and
loads much faster. Subsequent reference
to the file name via the PDOS monitor
automatically restore the tokens for the
BASIC interpreter and begin execution.

@

PDOS 2.4 DOCUMENTATION CHAPTER 3 POOS

PAGE 3-23

(3.2.4 FILE ATTRIBUTES continued)

EX - PDOS BASIC file. A BASIC program
stored using the ‘SAVE' command is
written to a file in ASCII or - EIST
format. Subsequent file reference via
the PDOS monitor automatically causes
the BASIC interpreter to loed the file
and begin execution. ‘

TX - ASCII text file. A 'TX' type
classifies a file as containing ASCIL
character text. Reference to the file
name via the PDOS monitor causes the
file to be listed to your console.

UD - User Defined. A 'UD' file type has no
significance to PDOS other than file
classification.

A PDOS file is physically stored in contiguous or
non-contiguous sectors depending upon how it wWas initially
created. Contiguous files have random access times far
superior to non-contiguous files. A contiguous file is
indicated in the directory 1listing by the letter °'C’
following the file type.

File protection flags determine which commands are legal
when accessing the file. A file can be delete and/or write
protected.

File storage method and protection flags are summarized as
follons:

C - Contiguous file. A contiguous file is
organized on the disk with all sectors
logically sequential and ordered.
Random access 1in a contiguous file is
much faster than in a non-contiguous
file since the forward/backnard 1inks
are not required for positioning.

* - pelete protect. A file which has one
asterisk as an attribute cannot be
deleted from the disk wuntil the
attribute is changed.

*x - pelete and write protect. A file which
has tWo asterisks as an attribute cannot
be deleted nor Written to. Hence, READ,
POSITION, REWIND, and CLOSE are the only
legal file operations.

-t
-

SAVE "FILE"

Contiguous File

Délete protect

Delete and write protect

SSEEESESEEEEREISSESSSSS2ISISSSS S ==

PDOS 2.4 DOCUMENTATION CHAPTER :3 POOS .

3.2.6 TIME STAMPING

When PDOS is first initialized, the system prompts for a
date and time. These values are then maintained by the
system clock and are used for time stamping file updates,
assembly listings, and other user defined functions.

When a file is first created or defined, the current date
and time is stored with the disk directory entry. This time
stamping sppears in the °‘DATE CREATED' section of a
directory listing. From then on, the creation date and time
are not changed.

When a file has been opened, altered, and then closed, the
current- date and time are written to the 'LAST UPDATE'
section of the disk directory entry. The time stamp
indicates when the file was last altered by any user.

3.2.7 PORTS, UNITS, AND DISKS

The terms ports, units, and disks are often confused and
hence are explained again:

Ports Ports are logical input channels and
are referenced by numbers O through 8.
Associated with each port is an
interrupt driven input buffer. The BAUD
PORT command binds a physical 9902 UART
to a buffer.

Units A unit is an output gating variable.
Each bit of the veriable directs
character output to a different source.
Bit 1 (LSB) is associated with UIC(9)
CRU base. Likewise, bit 2 is associated
with U2C(9) CRU base. The ‘SU' and
‘SPOOL' commands bind the other bits to
the PDOS file structure.

Disks A disk is a logical reference to a
secondary storage device. Disk numbers
range from 0 to 127. Several disk
numbers may reference the same physical
device. The boot EPROMs decipher what
the disk number means.

PAGE 3-24

sEdulnees=sezz ooz zzzsszzzzzszzss=s =52

PDOS/101 R2.4

ERLI, COPYRIGHT 1982
DATE=MN,DY, YR 3,5,82
TIME=HR,MN,SC 12,01

Date created

Last update

POOS 2.4 DOCUMENTATION CHAPTER 3 POOS PAGE 3-25

~ ==

\

H

3.3 PDOS MONITOR

The PDOS monitor is a resident program which handles the
most common PDOS commands. After getting a command line,
the monitor calls the command line interpreter to parse the
line for commands and parameters. A command line is
delimited by a (carriage return>. If a command line is not
complete, your task is suspended pending character inputs.

The PDOS monitor prompts with a bell followed by a period. 80 character command buffer
These characters are altered by the BFIX utility. A commend

line can be up to 78 cheracters. The escape <esc> or

control C (“C) keys cancel the entire input line. The

rubout <rub) key erases the last entered character from both

the input line and the character buffer.

A bell signals one of the following: 1) the monitor is Bell =) Buffer ready

ready to accept a line, 2) a rubout is entered and the Buffer underflon

buffer is empty, 3) too many characters are entered, or 4) Buffer overflow

the number of cheracters equals the internal message buffer Message buffer equivalent

size. The Jlatter indicates the meximum command string
length that can be passed to another task.

Numeric parameters are entered as signed decimal, hex, or .IM YOF -
binary numbers. A1l numbers are converted to 2's complement .CONVERT %1100101,10,FFE.
16-bit integers and range from -32768 to 32767 (hex »>8000 to .

»7?FFF). Hex numbers are preceded by a right angle bracket

() and binary numbers by the percent sign (%). (Note:

Numbers are not checked for overflow. Hence, 65535 is

equivalent to -1.)

You enter more than one PDOS commend on a line by .LS.SY 1.LS /1.LV
separating the commands With a period. Command parameters
immediately follow the command name and are separated by .CT (CT (ASM PRGM:SR, ,LIST,ERR),10,,2),12,,2
commas or spaces. Nested parentheses are used to enclose
parameters Within parameters. When multiple commands appear SP.LV.SY
on the same 1line, the remainder of the command line is FREE=180
echoed by the monitor as each command is executed. USED=190/200
.Lv.SY
LEVEL=1
.SY .
SYS DISK=0

PDOS 2.4 DOCUMENTATION ‘ CHAPTER 3 PDOS

PAGE 3-26

3.4 FLOATING POINT MODULE

The PDOS floating point module is a single accumulator, IBM
excess 64 format, multi-user floating point processor. It
includes all the necessary routines to write assembly
language floating point software and supports the PDOS BASIC
interpreter. Commands include the follouingz

. Addition

. Subtraction

. Multiplication

. Division

. Load accumulator

. Store accumulator

. Scale

. Clear

. Float

. Normalize

. Negate

Absolute value

. Multiplicative inverse
. Load clock tics

. Load error register .
16. Return accumulator status

O ONODOEWN

S . T JITS QU N Y
m»wlv_so

(

Floating point operations are called with XOPs 0 through 8.
The floating point accumulator 1is saved in the task list
after each swap operation.

