
==~==

PODS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-1

===

CHAPTER 11

EDIT-ASH-LINK-XBUG

This chapter explains the use of the PODS development
softHBre tools EDIT, ASH, LINK, and XBUG. Assembly and
BASIC applications are Hritten, assembled, linked, and
debugged using these utility programs.

Included Hith PODS are three editors: a virtual screen
editor (JED), a non-virtual screen editor (JEDY), and a
small character editor (EDIT). The 9900 assembler (ASH),
the module linker (LINK), and the resident debugger (XBUG)
are also necessary for application development.

11.1 EDITORS ••....................................•...•. 11-2

11.1.1 JED- VIRTUAL SCREEN EDITOR •......•...... 11-2
11.1.2 JEDY- NONVIRTUAL EDITOR••.•.•.•.•. 11-11
11.1.3 EDIT- CHARACTER EDITOR ..•...•..•••..... 11-12

11.2 ASH- PDOS 9900 ASSEHBLER•... 11-17

11.2.1 USING THE ASSEMBLER 11-17
11.2.2 ASSEMBLY LANGUAGE FORHAT•.. 11-20
11.2.3 CONSTANTS•............... 11-21
11.2.4 SYMBOLS•. 11-21
11.2.6 OPERATORS 11-21
11.2.6 EXPRESSIONS 11-22
11.2.7 ASSEMBLER OBJECT TAGS•.............. 11-22
11.2.8 ASSEMBLER DIRECTIVES•.•...•. 11-24

11.2.8.1 REQUIRED DIRECTIVES 11-26
11.2.8.2 CONSTANT INITIALIZATION•. 11-27
11.2.8.3 LOCATION COUNTER ..••......••.. 11-30
11.2.8.4 OUTPUT CONTROL•..•.. 11-37
11.2.8.6 LINKAGE .••...•••..•......•.... 11-40
11.2.8.6 CONDITIONAL ASSEHBLY ...•.....• 11-42

11.3 LINK - MODULE LINKER 11-47

11.4 XBUG- RESIDENT DEBUGGER• 11-61

TABLE 11.1 ASSEMBLER OBJECT TAGS••• 11-23

TABLE 11.2 LOCATION COUNTER DIRECTIVES .•........•.....• 11-32

===
PODS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-2
===

ll. • ~ EDITORS

~~.~.~ JED - ~RTUAL SCREEN EDITOR

JED is a screen oriented editor designed for terminals Hith
24 x SO character displays and cursor addressing. JED
features numerous text editing capabilities in REPLACE and
INSERT modes. All character editing is immediately
displayed on the screen; the screen alHays reflects the true
image of the text being edited. Consequently, you are not
likely to become confused or lost as is the case Hith
character and line editors.

The first tHenty-three lines of the display are used to
HindoH into the editor text buffer. The tHenty-fourth line
displays prompt and status messages associated Hith JED
commands. The cursor indicates the place at Hhich at
transactions take place, including character insertion,
deletion, and replacement. In INSERT mode, text is inserted
by simply typing the desired characters. The text is
adjusted to the right and belOH automatically. In REPLACE
mode, buffer characters are overHritten as neH characters
are entered. In both modes, control keys are used to invoke
special editing functions.

JED is a virtual editor, not limited to just the available
memory space for editing large files. If the edit buffer
exceeds user task space, JED moves text to and from
temporary disk files. The management of the temporary files
is transparent to the user. THO files are maintained on the
system disk tor this purpose. They are defined
automatically Hhen JED begins execution.

JED has a priority structure for processing editor
functions. JED commands have the highest priority and
override all other functions. The screen update processor
has second priority and updates only those characters Hhich
change on the screen. After each command, this process is
restarted from the top of the screen. The loHest priority
task is a time-of-day clock in the loHer right hand corner
of the screen. The clock is updated only Hhen JED is idle.

Screen oriented editor

REPLACE and INSERT modes

23 line HindoH
1 status line

INSERT mode

REPLACE mode

Virtual editor

1---------------1 I
I JED TASK I I
: ,I/

I
I

I
I

EDIT BUFFER

:---------------1\
\

\

JEDT

I

VIRTUAL HEHORY

\. __ _
JEDB

======~---===~===

PODS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-3

===

(11.1.1 JED- VIRTUAL SCREEN EDITOR continued)

Cursor movement and other special commands are initiated by
control characters. (Control characters are indicated by a
"A" symbol preceding a character.) Some terminals already
have function keys that can be used directly for cursor
movement. The escape key is a special control function
Hhich is used to delimit multiple key commands and set JED
modes.

Certain commands require only the control character; others
require a string of characters, such as a file name. JED
prompts on the 24th line for those requiring further
information. Hhen the prompt is given, the string is
entered and then terminated Hith an <esc>. If a mistake is
made Hhile typing the string, then the <rubout> key erases
the last character entered. The command is aborted by
entering a AC or by deleting the Hhole string Hith <rubout>
and entering an <esc>.

The last command string for GET FILE, HRITE FILE, and
SEARCH commands is recalled by repeating the command key
tHice. THO recall buffers are maintained, one for the GET
<AG> and HRITE <AH> FILE commands, and the other for the
SEARCH <AS> and <AB> commands. Thus, to Hrite an edited
file beck to the original file, a <AH> <AH> <esc> <V>
sequence prompts for HRITE FILE, recalls the file name,
delimits the command, and verifies the action. LikeHise,
the last search command is repeated by entering <AS> <AS>
<esc>.

All file operations by the JED editor require an operator
verification. This is done by JED prompting Hith a 'VERIFY'
in the lOHer right hand corner of the screen after the <esc>
key has been entered. A <V> or <v> Hill change the 'VERIFY'
to 'VERIFIED' and the command is executed. Any other
character changes 'VERIFY' to 'NOT VERIFIED' and the command
is aborted.

If the output file is not defined, JED prompts Hith 'CREATE
VERIFY'. A <V> or <v> key changes the prompt to 'CREATE
VERIFIED', defines the neH file, and Hrites to that file.
This applies to OUTPUT BLOCK and HRITE FILE commands.

Control character commands

24th status line

Last command recall

Operator verification

Auto-create

===
PDOS 2.4 OOCUHENTATION CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-4
===

(11.1.1 JED- VIRTUAL SCREEN EDITOR continued)

JED COMMANDS

<"A>

<"B>

<"C>

<"0>

INSERT FROM UP BUFFER. The INSERT FROM
UP BUFFER command inserts text from the
'UP' buffer, beginning at the cursor.
(See <"U>.)

BACKHARO SEARCH. The BACKHARD SEARCH
initiates a text search, starting at the
cursor to the beginning of the text
buffer. The command prompts Hi th "­
Search tor "' after Hhich the text
string is entered. If the string is
found, the cursor is positioned on the
leftmost character of the text string
and a RECENTER TEXT command is executed.
If an <esc> is immediately entered,
another search is initiated for the same
text string. OtherHise, the search mode
is exited.

If the string is not found, the message
"Not Found" is displayed, search mode is
exited, and the cursor is left
unchanged.

CANCEL. The CANCEL command terminates
a current text search, aborts a command
prompt, and interrupts an infinite macro
sequence.

DEFINE MACRO. The DEFINE MACRO command
enters and exits macro definition mode.
Macro definition mode is indicated by
the presence of the Hord "MACRO" in the
loHer right hand corner of the screen.
In macro mode, each entered key (except
<"D> and <"E>) is stored in the MACRO
BUFFER. Commands are executed as the
macro is defined. The macro definition
is completed by entering another <"D>.

Macro definition mode is automatically
terminated if the macro buffer
overflOHs. The macro buffer holds 256
characters. Only one macro is can be
defined at a time. The macro definition
is deleted by entering <"D> <"D>.

INSERT FROM UP BUFFER

BACKHARD SEARCH

- Search for ' <string> '

Not Found ' <string>'

CANCEL

Get file ' <string> "C'

DEFINE MACRO

MACRO

~'

~=~~===
POOS 2.4 OOCUHENTATION CHAPTER 11 EDlT-ASH-LINK-XBUG PAGE 11-5

~ ===
(\

(11.1.1 JED- VIRTUAL SCREEN EDITOR continued)

EXECUTE MACRO. The EXECUTE MACRO
command executes the command strings
current 1 y stored in the macro buffer.
Each command is recalled and interpreted
as if i t had been entered from the
keyboard.

FIND POINTER. The FIND POINTER command
locates the editor pointer and leaves
the cursor immediately to the right of
the pointer, (see <AP> command). The
text is recentered on the screen. If no

pointer exists in the text, the message
'No pointer in text' is displayed.

GET FILE. The GET FILE command, Hhen
VERIFIED, reads a file into the editor
buffer. The command first clears the
edit buffer, reads in the text, and
places the cursor at the begiming of
the buffer.

HOVE LEFT. The HOVE LEFT command moves
the cursor left one character in the
edit buffer. Hhen used in conjunction
with the <esc> key, it moves the cursor
to the beginning of the line. The
cursor Hill not move past the beginning
of the line. A tab field is treated as
one character.

TAB. Your screen is divided into 10
zones or tab stops, consisting of eight
characters each. Hhen a TAB is entered,
the cursor advances to the next tab
stop.

HOVE DOHN. The HOVE DOHN command moves
the cursor down one display 1 ine. Hhen
used in conjunction with the <esc> key,
the cursor is moved dawn 11 lines. The
cursor moves directly down unless 1) it
moves into a tab field, or 2) it moves
down past the end of the next 1 ine. In
either case, the cursor then moves left
to the begiming of the tab field or the
end of the 1 ine. The screen scrolls up
when the cursor attempts to move down
past the 23rd line.

EXECUTE MACRO

FIND POINTER

No pointer in text

GET FILE

VERIFY

HOVE LEFT

TAB

HOVE OOHN

===--===
PDOS 2.4 DOCUMENTATION CHAPTER 11 EDlT-ASH-LlNK-XBUG PAGE 11-6

===;===

(11.1.1 JED- VIRTUAL SCREEN EDITOR continued)

<"K>

<"L>

<CR>

<"N>

<"P>

HOVE UP. The HOVE UP COIIIIIIand 110ves the
c~rsor up one display Hne. Hhen used
in conjunction with the <esc> key, the
arsor is 110ved up 11 lines. The arsor
moves directly up unless 1) it moves
into a tab field, or 2) it moves up past
the end of the previous line. In either
case, the cursor then moves 1 eft to the
beginning of the tab file or the end of
the line.

The screen scro 11 s doHn Hhen the Clrsor
attempts to move up past the first line.
The cursor cannot move above the
beginning of the text.

HOVE RIGHT. The HOVE RIGHT command
moves the C~rsor right one character.
Hhen used in conjunction Hith the <esc>
key, the arsor is moved to the end of
the arrent line. The cursor Hill not
move past the end of the line.

CARRIAGE RETURN.
terminated by a <CR>.

Each line

NEH BUFFER. The NEH BUFFER command,
Hhen VERIFIED, causes the editor to
clear the edit buffer and reinitialize
all flags.

OUTPUT BLOCK. The OUTPUT BLOCK
command, Hhen VERIFIED, outputs all text
between the cursor and the pointer to
the specified tile, (see <"P> command).

PLACE POINTER. The PLACE POINTER
command inserts a special character
called a pointer into the text buffer.
This pointer is displayed as a.-... The
pointer and the cursor define a segment
of text Hhich can be written to the disk
<"0> or internal UP buffer <AU>, and/or
deleted <"\>. If the pointer already
exists in the edit buffer, the <"P>
command deletes the old pointer and then
inserts a neH pointer at the cursor
position. To get rid of it, simply
delete it.

HOVE UP

HOVE RIGHT

CARRIAGE RETURN

NEH BUFFER

NeH buffer VERIFY

OUTPUT BLOCK

Output cursor to Pointer VERIFY

PLACE POINTER

~
I

==~==
POQS.2.4 DOCUMENTATION CHAPTER 11 EDlT-ASH-LlNK-XBUG PAGE 11-7

=========~==

(11.1.1 JED- VIRTUAL SCREEN EDITOR continued)

<"'Q>

<"'R>

<"'S>

<"'T>

<"'U>

QUIT. Hhen VERIFIED, the QUIT command
returns you to the PDOS monitor. All
files associated Hith the editor are
closed.

RECENTER TEXT. The RECENTER TEXT
command recenters the text around the
cursor in the middle of the screen (line
12).

SEARCH FORHARD. The SEARCH FORHARD
command searches the text buffer for a
specific text string. The command
prompts Hith "Search for · ", after Hhich
the text string is entered. If the
string is found, the cursor is
positioned to the right of the text
string and a RECENTER TEXT command is
executed. lf an <esc> is immediately
entered, another search is initiated for
the same text string. OtherHise, the
search mode is exited.

lf the string is not found, the message
'Not found' is displayed and search mode
is exited.

TOP OF BUFFER. The TOP OF BUFFER
command moves the cursor to the
beginning of the edit buffer.

COPY TO UP BUFFER. The COPY TO UP
BUFFER command copies the text betHeen
the cursor and the pointer into an
internal temporary buffer called the up
buffer. If the text length is less than
255 characters, then the message ·r got
it' is displayed. Otherwise, the
message 'OVERFLOH' is displayed and the
string is truncated in the buffer. The
up buffer is inserted into the edit
buffer at the cursor Hith the <AA>
command (see "'A command). lf there is
not pointer in the buffer, then 'No
pointer in text' is displayed.

QUIT
QUIT VERIFY

RECENTER TEXT

SEARCH FORHARD

Search for ' <string> ·

Not found · <string> '

TOP OF BUFFER

COPY TO UP BUFFER

l got it

OVERFLOH

No pointer in text

===
PODS 2.4 DOCUMENTATION CHAPTER 11 EOIT-ASH-LINIHCBUG PAGE 11-8

===

(11.1.1 JED- VIRTUAL SCREEN EDITOR continued)

<~V> CONTROL CHARACTER INSERT. The <~V>

character causes the next entered
character to be inserted in the edit
buffer, regardless of its command
definition. This a11DHs control
characters to be entered into the edit
buffer. Because centro 1 characters are
not displayable, they are assigned
regular character representations and
appear as such in the text. Hhen
searching for the character, you must
remember to use the <AV> before the
control character and not the displayed
character.

<"]>

HRITE FILE. The HRITE FILE command,
Hhen VERIFIED, Hrites the edit buffer to
the specified file.

TYPE AHEAD CANCEL. The TYPE AHEAD
CANCEL command clears the PDOS character
input buffer.

INSERT FILE. The INSERT FILE command,
Hhen VERIFIED, reads and inserts the
specified file into the text buffer
beginning at the cursor. The cursor is
placed at the beginning of the inserted
text.

BOTTOM OF BUFFER. The BOTTOM OF BUFFER
command moves the cursor to the end of
the edit buffer.

DELETE BLOCK. The DELETE BLOCK
command, Hhen VERIFIED, deletes the
segment of text betHeen the cursor and
the pointer, including the pointer.

CLEAR TO END OF LINE. The CLEAR TO END
OF LINE command deletes the text from
the cursor to the end of the line.

DELETE LINE. The DELETE LINE command
deletes the text from the cursor to the
end of the line, including the carriage
return.

CONTROL CHARACTER INSERT

t"A = ! "1 = <TAB>
t .. B = " '"J = *
"C = # ~K = +
~D = s "L = I
"E = % "M = <CR>
"F = & ~N =
"G = . "0 = I
~H = (~p = 0

HRITE FILE

TYPE AHEAD CANCEL

INSERT FILE

BOTTOM OF BUFFER

DELETE BLOCK

CLEAR TO END OF LINE

DELETE LINE

"Q = 1 "Y = 9
"R = 2 "Z = :
"S = 3 "[=
"T = 4 "\ = (
"U = 5 "] --
"V = 6 Mo =)
"H = 7 ~ = ? -
~x = 8

=============~===--===
·PQilS 2. 4 DOCUHEHTA TlON CHAPTER 11 EDIT-ASH-LlNK-XBUG PAGE 11-9

. ===--=====

(11.1.1 JED- VIRTUAL SCREEN EDITOR continued)

<"_> DELETE RIGHT. The DELETE RIGHT cOMand
deletes the character to the right of

the arsor.

<rubout> DELETE LEFT. The DELETE LEFT command
deletes the character to the left of the
etrsor.

ESCAPE FUNCTIONS

The escape key has tHO functions. First, the <esc> is used
to end the file na11e or search string par8111eter for the
<"G>, <"0>, <"H>, and <"S> commands. The string is then
ter•inated Hith a single quote and the editor continues.

The second function of the <esc> key involves JED modes and
PODS access. The single character etrsor move com~~ands

(<"H>, <"L>, <"J>, <"K>) can be changed
to .ultiple character 110ves by entering the <eac> key before
the COIIIII8nCI control key. The editor re~~~ains in this mode
until a key other than <"J> or <"K> is entered.

The REPLACE and INSERT modes are selected HHh the tHO
character commands <esc> < "R> and <esc> <"I>. A PDOS
directory listing is displayed by entering <esc> <"A>.

These and other <esc> collllll8nds are 1 is ted beloH. Any

character follOHing an <esc>, other than those listed, cause
the <esc> to be ignored.

<esc> <"A> LIST DIRECTORY. The LIST DIRECTORY
COIIIII8nd alloNs you to examine the disk
directory contents Hithout exiting the
editor. The prompt, "List directory'",
is issued, and you input a 1 ist
parameter string, just as Hith the 'LS'
cOMand of PDOS, and close it Hith an
<esc>. The specified file directory is
scro 11 ed to the screen. Hhen the 1i st
is completed, the message, 'Strike any
key:', is displayed. The next key
struck is not processed by JED, but the
screen is cleared and then refreshed to
display the edit buffer again.

DELETE RIGHT

DELETE LEFT

<esc> terminates parameter string

<esc> selects JED modes

LIST DIRECTORY

List directory'

Strike any key :

================--==============--=================-------===--===========--=========--=--=
PllOS 2. 4 oOaitENr ATION CHAPTER 11 EDlT-ASH-LlNK-XBUG PAGE 11-10

==--==--=============================--=============

(11.1.1 JED- VIRTUAL SCREEN EDITOR continued)

<esc> <"E> INFINITE MACRO. The INFINITE MACRO
mode Hi 11 repeat the editor macro unt i1
either an error occurs or a <"C> is

entered.

<esc> <"H> JUMP LEFT. The JUHP LEFT c0111111and moves

the cursor to the begiming of the 1 ine.

(Left IIITOH)

<esc> <"I> INSERT MODE SELECT. The INSERT MODE

<esc> <"J>

SELECT conaand causes characters to be

inserted into the text string Hhile all

char-actet"s to the right and doHn are

automatically adjusted. (This is the

default mode.)

JUHP DDHN. · · The JUMP OOHN command

the cursor dOHn e 1 even 1 i nes.

used to scan the text quickly.

lltTOH)

moves

This is

(OOHn

<esc> <"K> JUHP UP. The JUHP UP command moves the

cursor up eleven 1 ines. (Up arrOH)

<esc> <"L> JUMP RIGHT. The JUMP RIGHT command

IIOV8S the cursor to the end of the line.

(Right ar-rOH)

<esc> <"R> REPLACE HODE SRECT. The REPLACE MODE

SELECT cOMand allOHs charactet"s under

the cursor to be ovenritten instead of

moving the old characters to the right

and inserting the neH ones.

INFINITE MACRO

JUHP LEFT

INSERT MODE SELECT

JUHP DI»>N

JlJHP UP

JUMP RIGHT

REPLACE HOllE SELECT

===
PODS 2.4 DOCUHENTAT10N CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-11

~ ===

~~.~.2 JEDY - NONVIRTUAL EDITOR

JEDY is a non-virtual memory implementation of the JED
editor. All features of JED are retained, Hith the
exception that editing must be done completely Hithin user
metDOry. Hhen the internal memory limits are exceeded, a
'BUFFER FULL' message is printed by JEDY.

JEDY is advantageous Hhere disks are often sHBpped in and
out. Also, a larger buffer can be accommodated since the
virtual memory handlers have been omitted.

Additions to the JEDY editor include:

<esc> <AB> FREE BYTE COUNT. The FREE BYTE COUNT
command reports to the console the
number of bytes remaining in the buffer.
Hhen this count becomes zero and you
enter another character, JEDY reports a
'BUFFER FULL' error, rings the terminal
be 11 , and ignores the character input.
The only commands accepted from then on
are movement and deletion commands.

FREE BYTE COUNT

Free bytes =

===
PODS 2.4 DOCUMENTATION CHAPTER 11 EOIT-ASH-LlNK-XBUG PAGE 11-12
===

11.1.3 EDIT - CHARACTER EDITOR

The EDIT program is a character oriented editor. Single or
double character commands, optionally preceded by a number,
allOH you to edit a text file in memory. EDIT can be exited
and re-entered Hithout destroying the buffer.

A character buffer is used for string editing. An
imaginary pointer indicates Hhere in the buffer all editing
takes place. This pointer is easily moved around Hithout
disturbing the buffer data.

A file can be read in by EDIT Hhen it is run from PDOS by
simply folloHing EDIT Hith the desired file name. POOS
loads the EDIT utility and then EDIT opens the file for
input (GI<filename>), yanks in a page (Y), and closes the
file (GI).

EDIT prompts f.or all commands Hith a '*' character. The
first character of each string entered is the command byte.
Commands are terminated Hith the <esc> key Hhich echoes as a
'$'. Host commands have tHo parts in Hhich case the <esc>
is also used to delimit the arguments. Commands are not
executed unit a double <esc> is entered. Commands can be
chained together as long as the double <esc> is not entered.
Once a double <esc> is entered, execution begins. The
execution of the command line can be interrupted by a <AC>.

EDIT file storage is page oriented. Data is read from an
input file until either a form feed <AL> or end-of-file is
found. An output file then receives the edited data. The
normal output commands again place the form feed betHeen
pages. HoHever, this can be overridden for special cases.

.EDIT FILE1
*GIFILE1YGI$

*

~ ..

=====-===
PODS 2.4 OOCUHENTAT!ON CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-13

~ ===

,.,..,
\

(11.1.3 EDIT- CHARACTER EDITOR continued)

The EDIT commands are defined as follows:

A

B

APPEND NEXT PAGE. The next page from
the input file is appended to the end of
the edit buffer. A form feed <~L> is
not inserted. The pointer is placed at
the begiming of the neH page.

HOVE TO BEGINNING OF TEXT. The pointer
is placed at the begiming of the edit
buffer.

C<s1>$<s2> CHANGE. A forHard search is done for
<s1> from the current buffer pointer.
If found, <s1> is replaced by <sZ>. The
pointer is placed at the begiming of
the changed string. If <s1> is not
found, the pointer is left unchanged.

GI<s>

GI

GO<s>

GO

H

#I

CHARACTER DELETE. I characters are
deleted from the edit buffer, begiming
at the pointer.

GET FOR INPUT. The PODS file specified
by <s> is opened for input. If a
previous file Has already open, it is
first closed.

CLOSE INPUT FILE. If a file is
currently open for input, it is closed.

GET FOR OUTPUT. The PODS file
specified by <s> is opened for output.
If a previous file Has already open, it

is first closed.

CLOSE OUTPUT FILE. If a file is
currently open for output, it is closed.

RETURN TO PODS. EDIT exits to the PODS
monitor.

INSERT BYTE. Control characters
(including a <~c> and <esc>) can be

inserted into the edit buffer by
preceding the insert command Hith the
decimal equivalent of the character.

APPEND NEXT PAGE

HOVE TO BEGINNING OF TEXT

CHANGE

CHARACTER DELETE

GET FOR INPUT

CLOSE INPUT FILE

GET FOR OUTPUT

CLOSE OUTPUT FILE

RETURN TO PODS

INSERT BYTE

==~==========================
PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-14

===

(11.1.3 EDIT- CHARACTER EDITOR continued)

I<s>

#J

#K

#L

N

p

#P

PH

#PH

INSERT STRING. The string <s> is
inserted into the edit buffer beginning
at the pointer. The string <s> is
terminated by the <esc> character.

HOVE LINES. The HERE POINTER ('.')
sets another pointer into the edit
buffer. Lines can be moved from the
HERE pointer to the current buffer
pointer by the HOVE LINES command. #

indicates hoH many lines are to be

moved.

KILL LINES. # lines, delimited by a
<CR>, are deleted from the edit buffer.
The buffer pointer is the point of
transaction.

LINE HOVE. The buffer pointer is moved
lines forHard or backHard from its
current position. A zero (or no
parameter) move is to the beginning of
the current line.

CHARACTER HOVE. The buffer pointer is
moved # characters forHard or backHard
from its current position.

NEH BUFFER. Hhen this command is
verified, the edit buffer is cleared.

PUNCH BUFFER. The entire edit buffer
is Hritten to the output file and a form
feed <AL> is appended to the end.

PUNCH # LINES. # lines, beginning at
the pointer, are Hritten to the output
file. A form feed <AL> is appended to
the end.

PUNCH HITHOUT <AL>. The entire edit
buffer is Hritten to the output file.

PUNCH# LINES HITHOUT <AL>. # lines,
beginning at the pointer, are Hritten to
the output file.

INSERT STRING

HOVE LINES

KILL LINES

LINE HOVE

CHARACTER HOVE

NEH BUFFER

PUNCH BUFFER

PUNCH # LINES

PUNCH HITHOUT < AL>

PUNCH # LINES HITHOUT <AL>

·""" \

===--==============--==========
PDOS 2.4 .DOCUMENTATION CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-15
====--===--======--=================

(11.1.3 EDIT- CHARACTER EDITOR continued)

S<s>

T

IT

IX

XH<s>

XH

y

z

=

SEARCH FOR STRING. A search for string
<s> is made in the edit buffer beginning
at the pointer. If <s> is found, the
pointer is placed at the beginning of
the string. If <s> is not found, the
pointer is left untouched.

TYPE ENTIRE BUFFER. The entire buffer
is output to the user conso 1 e. A "C
Hill stop the printing.

TYPE I LINES. I lines of edit text,
beginning at the pointer, are printed to
the user console. If I is negative,
then the pointer is moved back I lines
and I lines are printed.

EXECUTE MACRO. The edit macro, if

defined, is executed I times. If no
number is given, the macro Hill be
executed only once. A <"C> breaks
execution.

DEFINE MACRO. An edit ucro is defined
by the string <s>. No execution takes
place.

DELETE MACRO. The edit macro is
deleted.

YANK NEH PAGE. The edit buffer is
cleared and a neH page of characters is
read from the input file. This read is
delimited by a form feed <"L> or
end-of-file.

HOVE TO END OF TEXT. The pointer is
moved to the end of the edit buffer.

HERE POINTER. A pointer is set for the
HOVE LINES command. The current 1 i ne
number is also printed to the user
console.

I OF LINES. The number of lines in the
user edit buffer is printed to the user
console.

I OF CHARACTERS. The number of
characters in the user edit buffer is
printed to the user console.

SEARCH FOR STRING

TYPE ENTIRE BUFFER

TYPE I LINES

EXECUTE MACRO

DEFINE MACRO

DELETE MACRO

YANK NEH PAGE

HOVE TO END OF TEXT

HERE POINTER

I OF LINES

OF CHARACTERS

==============~==============~=============================-~=======--======------=====================================
PDOS 2. 4 DOCUHENT ATlON CHAPTER 11 EDIT -ASH-l.lNic-lCBUG PAGE 11-16
==--==============--====--===== -==============================~===~==

(11.1.3 EDIT -CHARACTER EDITOR continued)

+ I OF CHARACTERS LEFT. The nulber of
chracters available in the edit buffer
is printed to the user console.

A sa.ple edit session is given belOH:

.EDIT
EDIT R2.4
I THIS IS A TEXT FILE

*
START XPHC
* DATA HES01

XEXT

*
HES01 BYTE >OA. >00

; OUTPUT MEssAGE

TEXT 'OUTPUT MESSAGE'

.lt
*Ill

BYTE 0
END START

* THIS IS A TEXT FILE

*
START XPHC

*

DATA HES01
XEXT

MES01 BYTE >OA, >00

; OUTPUT MESSAGE

TEXT 'OUTPUT HESSAGE'
BYTE 0

*!!b.
*.l!.lt

END START

* THIS IS A TEXT FILE

*SOUTPUTSU1TU
START XPHC ; OUTPUT MESSAGE

*C'OUTPUTS'PRINTEO$LS1T$$
TEXT 'PRINTED MESSAGE'

*GO TEMPS$
*~

*.!:!U

I OF CHARACTERS LEFT

~
)

===--======--===--======
PDOS 2.4 DOClJ£NTATlON CHAPTER 11 EDIT-ASH-LINK-XBUG PAtE 11-17
============================--==--=====•========-==-=========

11. 2 ASM - PDOS 9900 ASSEMBLER

ASH is a THS 9900 assetlbler designed to be used Hith the
PDOS operating system. ASH accepts THS 9900 and 9995
assellbly ~~~nemonics and directives, and outputs 9900 tag
object code. It can be run in foregrm.rld mode Hi th the user
inputting optional files from the keyboard, or in background
IIIOde as an offline task Hhi le other processes such as
editing are run in the foreground.

Input and output options are specified by a list of fi1e
naJieS follOHing the ASH co.and or fro11 keyboard prompts.
These options are, in order:

<SOURCE>
<OBJECT>
<LIST>
<ERROR>
<XREF>

Assembly source file (required)
Tl Object output file
Assembly 1 isting file
Assellbly error file (default to console)
Syibol cross reference file

11.2.1 USING. THE ASSEMBLER

To invoke the assembler fr011 the keyboard, SiiiPlY insert a
disk Hith an ASH file on it and type ASH. If there are any
disk errors encountered, such as 'file not defined', then
ASH Hill report 'PODS ERROR= ', follOHed by the PODS error
I, and then return to POOS. Since SOllie programs create LIST
or XREF files too large for the disk space available, these
files can be specified as drivers for printers or terminals.

The SOURCE file consists of T19900 assembler directives and
llll8IIIOI'Iics as described in the Tl9900 asseJibler manual. If

there is no IDT directive, no lOT Hill be output. The
SOURCE file IIUSt end Hith either a LINK or END directive.
The LINK cOMBnd opens the f i 1 e specified in the operand
field and continues assellbling as if it Here appended to the
SOURCE file. The final file must end Hith an END directive,
Hhich causes the assembler to reopen the original SOURCE
file and begin the second pass. The arpent of the END
directive is an expression Hhose value is output to the
OBJECT file Hith an entry tag.

.ASH TEST:SR,TEST,LlST,,XREF
ASH R2.4
SOURCE=TEST:SR
OBJ=TEST
LIST=LIST
ERR=
XREF=XREF
END OF PASS 1
0 DIAGNOSTICS
END OF PASS 2
0 DIAGNOSTICS

.ASH
ASH R2.4
SOURCE=_
ASH DEHO:SR,DEHO,$TTA, ,$TTO

SOURCE FILE

BEGIN HOV RO,RO

LINK PROG2

END BEGIN

===
PDOS 2.4 DdtUHENTAT-ION CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-18
==--==

(11.2.1 USING THE ASSEMBLER continued)

TI9900 tag object code is output to the file selected by
the 'OBJ=' prompt. The OBJECT code is output on the second
pass as a string of ASCII characters. The format is defined
by the TI9900 assembly manual.

ASH and PDOS supports byte addresses. PDOS 1 cads tHO bytes
at a time on byte boundaries. Checksums are optional in the
OBJECT file. All records are terminated Hith the 'F' tag.

The assembly symbol table can be optionally dumped to the
OBJECT file by selecting the 'S=1' option of the 'OPT'
directive. These values could be used by a symbolic
debugger at a later time.

The OBJECT file is closed by the assembler Hith an OB
attribute. If no linking is required, PDOS can execute the
f;le directly.

A listing of the source code, along Hith the assembled
object code values, is generated Hhen a file name is entered
for the LIST option. The LIST file is a paged Hith the
assembler name and revision at the top. The page number,
date, SOURCE file name, and disk name are on the next line.

A source nne is preceded by a tHo digit line number, the
hexadecimal address, and up to three hexadecimal object code
values. The assembler automatically pages every 66 lines or
Hhen the 'PAGE' directive is encountered.

FolloHing the source listing, an alphabetized list of the
symbols defined during assembly, along Hith the symbol type
and value, is output to : the LIST file. Possible symbol
types are:

A = absolute
R = program-relocatable
0 = data-relocatable
U = undefined
H = multiply-defined
E = REF symbol

The symbol table can be optionally replaced Hith a symbol
cross reference by selecting the 'X=1' option of the 'OPT'
directive.

OBJECT FILE

LIST FILE

==--==================
PODS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-19
===

(11.2.1 USING THE ASSEMBLER continued)

The assembler reports any assembly errors by printing the
line from the listing to the ERROR file, Hith an error
letter in column 3. Only the first error on each line is
reported by a letter, but the •total errors" message counts
ell errors found by the assembler. 1f no error file is
specified, errors are printed to the console. The current
errors are defined as:

'B' = Byte overfloH
'C' =Illegal ASCII constant
'D' = Text delimiter error
'E' = Illegal number
'F' =File error
'H' = Multiply defined symbol
'N' = Numeric overfloH
'0' = Field overfloH
'R' = CRU displacement out of range
'S' = Illegal symbol
'T' = Symbol table overfloH
·u· = Undefined symbol
'X' = Hissing operand
'e' = Expression mode error
'f' = Floating point conversion error
'm' = Multiply-defined symbol referenced
't' = Truncation error

A cross reference is output to the specified XREF option
file in a paged form, similar to the LIST file. Each symbol
is listed Hith its type and value folloHed by the page and
line # of each reference in the source. The reference at
Hhich the symbol is defined is marked Hith an asterisk (*).
The Horkspace registers RO through R15 are also included in
the cross reference. The cross reference is done during the
second pass, eliminating the need for a third pass. The
XREF listing is paging is consecutive Hith that of the LIST
file.

It is possible to direct the cross reference of the file
directly to the LIST file, by setting the X option flag
nonzero Hith the OPT directive. This eliminates the need to
append the XREF file to the LIST file for printing.

ERROR FILE

16XOD06: CDOO
22A001B: 1000

HOY Rn,
JHP $+>220

XREF FILE

c
D

A 0000 1/11* 1/29
H OQAg 1/4* 1/9* 1/29

==~==
PDOS 1'.'4 OOCUHEHTATION CHAPTER 11 EDIT-ASH-L!NK-XBUG PAGE 11-20
==============================:::;==========-==

~~.2.2 ASSEMBLY LANGUAGE FORMAT

Assembly language source statements consist of the
folloHing four fie1ds:

LABEL MNEMoNIC OPERANDS COMMENT

The source 1 ine must be less than 109 characters long, and
at least one blank or TAB must be inserted betHeen fields.

LABEL FIELD

The label is a symbol consbting one to six characters,
beginning Hith an alphabetic character in position one of
the source line. The label field is terminated Hith at
least one blank or TAB character. If a label is not used,
character position one must be a blank or tab character.

MNEMONIC OR OPCODE FIELD

This field contains the mnemonic code of 1) a 9900
instruction, 2) an assembler directive, 3) a symbol
representing one of the program defined XOPs, or 4) a
special code· invoking a POOS command primitive. Usually
this field is positioned in the second tab field, beginning
eight characters from the left. All of the four character
POOS command primitives are legal opcodes.

OPERAND FIELDS

The operands specify the memory locations or illllllediate data
to be used by the instruction. Constants, symbols,
literals, and expressions are legal operands.

COMMENT FIELD

Comments folloH the operand field. Usually the comment
field is positioned in the fourth tab field, beginning 24
characters from the left. The use of a semicolon as the
first character in the comment field helps to set off
comments for clarity. If the first character of a source
line is an asterisk (*), then the entire line is a comment.

LABEL A R1,R2

START XGNP
JNE ERR

;ADD

;GET PARAMETER
;NONE

~
I

======~==-----================
PODS 2.4 OOOUHENTATlON CHAPTER 11 EDlT-ASH-LlNK-XBUG PAGE 11-21

===- - --=======~==-====--==========

J.J..2.3 CONSTANTS

Constants can be signett deciul, hexadeciMl, or binary
integers, ASCll constants, or 6-byte floating point numbers.

DeciMl integers ere witten as a string of numerals in the
range of -32768 to +32767.

Hexadecimal constants consist of a string of hexadeciul
digits preceded by a right angle bracket and range from 0 to
>FFFF.

Binary constants consist of a string of 1's and D's,
preceded by a percent sign (1).

ASCII character constants are one or tHO characters
enclosed in single quotes. A single quote can be entered by
using tHO quotes('').

Floating point constants use the 'CONS' directive and may
be any legal floating point ntJIIIber including scientific
notation using the 'E' operator.

11.2.4 SYMBOLS

Symbols begin Hith an alphabetic character and can be up to
six characters in length. There can be no ubedded blanks.
Legal characters for positions 2 through 6 are A-Z, 0-9, .,
l and $. The asselllbler predefines the dollar sign ($) to
represent the current location counter, and the symbols RO
through R15 are used to represent the Horkspace registers.

A given symbol can be used as a label only once, and any
symbol in the OPERANDS field must have been used as a label
previously. Symbols defined Hith the OXOP directive are
used in the OPCOOE field.

J.J..2.5 OPERATORS

The binary operators interpreted by ASH for expressions are
+, -, *, I, &, !, and\. These operators perform 16-bit
addition, subtraction, signed multiplication, signed
division, logical AND, logical inclusive OR, and logical
shift right, respectively. To shift an operand logically
left, use a negative shift count.

AI R5,20

OR! R3 I >FFOO

Ll R0,%10110110

Ll RU, 'AB'
Ll RO,'' 'B'

CONS 3.1415926,1E10

DATA LABEL1,LABEL2,A$,LOX

DATA A+B-C*D/E
DATA -1&-2!FLAG
BYTE ADOR&>OOFF*256

BYTE ADDR\B,ADOR\-8

============:::=:===
PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-22
==============·=====================:=:===

11.2.6 EXPRESSIONS

Expressions are made of up symbols and constants, Hhich may
be immediately preceded by a unary plus (+) or minus (-).
Symbols and constants are separated by operators, and the
expression is evaluated from left to right Hith no operator
precedence. Only absolute operands are used Hith
multiplication or division. The rule governing addition and
subtraction of relocatable operands is described in the TI
assemb 1 y manus 1 •

11.2.7 ASSEMBLER OBJECT TAGS

ASH outputs standard TI 9900 tag object and record formats,
Hith the folloHing exceptions:

1) Any tag address can be on an odd byte
boundary.

2) External tags 3, 4, 5, and 6 are
modified to be used Hith the PDOS single
pass linker.

3) Tags G and H have been added for OSEG
addresses and data.

4) Tags 7, 8, D, and E are not part of ASH
output.

The data type is· reflected in the listing by a single
character Hhich folloHs the hex object list. These
character types and the assembler output tag definitions are
defined in Table 11.1.

A SYSTEM FILE (type=SY) is a modified form of 9900 tag
object code. A one-third reduction in object code results
from: 1) eliminating all data superfluous to PODS, including
redundant address codes, checksums, <1 i ne feeds>, and lOTs,
and 2) converting all necessary data from four ASCll
characters into tHo binary bytes. A SYSTEM FILE is
generated from an object file by the SYF!LE utility. Only
tags 2, A, B, and C are output in the system file.

The PDOS loader Hi 11 accept either 9900 tag object or a
system object file. Since system object files are smaller,
load time is proportionately faster.

(See 5.30 LOAD FILE and 12.23 SYF!LE.)

LI RO,ASH42-ASH30/2+1300+100
HOVB i-PEND(R5),iTABLE+INDEXO

Type = SY

Tags 2,A,B,C

~ ..

===-- --- ----====================
PDOS 2.4 00CUHENTAT1DN CHAPTER 11 ED!T-ASH-LlNK-XBUG PAGE 11-23
==--=========--====

TAG FIELD 1 FIELD 2 FUNCTION LIST ID

0 PSEG length ProgrM 10 (8) lOT
1 Absolute entry (not used) END absolute
2 Relocatable entry (not used) END relocatable
3 Symbol (6) (not used) Externa 1 REF +
4 Absolute value S)'llbol (6) External DEF
5 P-R value S)'llbol (6) P-R External DEF
6 D-R value S)'lllbol (6) D-R External DEF
7 (Reserved)
8 (Reserved)
9 Absolute Address (not used) ADRG
A P-R Address (not used) RORG,PSEG
8 Absolute Data (not used) Absolute blank
c P-R Data (not used) Program-relocatable
D (Reserved)
E (Reserved)
F (not used) (not used) End of record
G D-R Address (not used) RORG,OSEG
H D-R Data (not used) Data-relocatable

TABLE U .• l. ASSEMBLER OBJECT TAGS

===================================~===

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDlT-ASH-LlNK-XBUG PAGE 11-24
===

11.2.8 ASSEMBLER DIRECTIVES

The PDOS ASH assembler supports the folloHing directives:

lOT < 'name · >
END <exp>
LINK <file>

Program identifier
End assembly, set entry
Link to file

EQU <exp> Define assembly-time constant
BYTE <exp1>{,<exp2>} ••. Initialize byte
DATA <exp1>{,<exp2>} ••• Initialize Hord
TEXT {-}{+} •• <'string'> Initialize text (any delimiter)
CONS <fp #>{,<fp #>} .•. Initialize 6 byte FP number

AORG <exp>
RORG { <exp>}
DORG <exp>
PSEG
DSEG

BES <exp>
ass <exp>
EVEN

PAGE
TlTL <'string'>
liST
UNL
DXOP <symbol>,<exp>

DEF <sym>{,<sym>} •.•
REF <sym>{,<sym>} ...
COPY <file>

IFZ <exp>,<symbol>

Absolute origin
Relocatable origin
Dummy origin (no object)
Program segment
Data segment

Block ending Hith symbol
Block starting Hith symbol
Set Hord boundary

Page eject
Page title
List source
No source list
Define extended operation

External definition
External reference
Include from <file>

lf <exp> zero, goto <symbol>
IFN <exp>,<symbol> If <exp> nonzero, goto <symbol>
DUP <exp> Duplicate next line <exp> times
OPT <char>=<exp>{,<char>=<exp>} •••

Set option flag <char>
? QFLG Assemble if ? nonzero
PFLG Assemble right or left half
c CFLG Output tag 7 checksums Hith object
l LFLG Expanded list options
R RFLG Register cross reference
s SFLG Punch symbol table to object
X XFLG Output XREF to LIST file

~

==----- --------======
PODS 2.4 DOCUMENTATION CHAPTER 11 EO!T-ASH-LlNK-XBUG PAGE 11-26

===

11.2.8.1 REQUIRED DIRECTIVES

Each source program must contain an lOT, and END or LINK.
These directives control the flow of input to the assembler.

END - PROGRAM END

Syntax definition:

{<label>} END {<exp>} {<comment>}

The END directive terminates the assembly source file. Any
source statements follOHing the END directive are ignored by
the assembler. Hhen the label field is used, the current
value ot the location counter is assigned to the symbol.
The operand field is optional. It specifies a
program-relocatable or absolute entry point to the program.

If the assembler finds an external reference or a
~ data-relocatable expression in the operand field, an
\ expression mode error (e) is printed, and no entry point is

output to the object file. The comment field may only be
used Hhen the operand field is present.

,,...,

An entry point in the OBJECT file consists of a '1' tag
follOHed by an absolute entry address or a '2' tag folloHed
by a relocatable address. PODS requires a relocatable entry
address to execute the f i 1 e from the monitor. Hhen a
program is to be combined Hith other modules by the LINKer
utility, the entry address is optional.

NOTE: The source line containing the END directive MUST
have a carriage return <CR> at the end, or a PDOS error 56
Hill be printed and the assembler Hill abort at the end of
the first pass.

BEGIN
END BEGIN ;OUT ENTRY TAG

HODUL
END ;NO ENTRY TAG

===--=======
PDOS 2.4 DOCUHENTAT!DN CHAPTER 11 SllT-ASH-LlNK-XBUG PAGE 11-26
==========~===

(11.2.8.1 REQUIRED DIRECTIVES continued)

IDT - PROGRAM IDENTIFIER

Syntax definition:

{<label>} lDT <'name'> {<comment>}

lDT assigns a na.e to a program. An lOT directive must
precede any code that results in object code. Hhen the
label field is used, the current value in the location
counter is assigned to the label. The operation field
contains 1DT. The operand field contains the progr81R natl8
<'name'>, a character string of up to eight characters,
delimited by any character.

lf the lOT has no C)perand, the assembler outputs a missing
operand error (X) and ignores the 1 ine. Hhen an operand of
~~~ore than eight characters is entered, the assembler prints 
a truncation error, :i (,t) and outputs in the lOT field, the 
first eight characters. lf less than eight characters are 
entered, the aSBellbler fills the lOT field Hith blanks. lf 
no closing deli11Her is encountered, the assembler prints a 
delimiter error (D) and outputs the lOT. 

The progra11 llatl8 is placed in the object code for utilities 
such as ALOAD and UNKer, but serves no purpose during the 
asse~~bly. The assellbler outputs to the OBJECT file a '0' 
tag, fo110Hed by 4 hexadecimal digits representing the PSEG 
length, and the 8 character lDT string. 

LINK - LINK TO FILE 

Syntax definition: 

{<label>} LlNK <file> {<comment>} 

The LlNK directive closes the current source file, opens 
the file specified by the operand, and continues the 
assembly process. The last statement of a source file must 
be either the 00 or LINK directive. Any s01rce statements 
follOHing a LlNK directive are ignored and the assembler 
begins reading source statements from the specified <file>. 

Hhen the label field is used, the current value of the 
location counter is assigned to the symbol. The operation 
field contains LlNK. The operand field contains the name of 
a PDOS file, fro• Hhich the assembler reads subsequent 
source state~Rents. The comment field is optional. 

lOT 'PRGH1' 
lOT $PRGHR2.0$ 

* FlLE ASH1:SR 
ASH 

LlNK ASHZ:SR 

* FILE ASHZ:SR 

LINK ASH3: SR 

* FILE ASH3:SR 

END ASH 



========================================================================================================================= 
PODS 2.4 DOCUHENTATlON CHAPTER 11 EDlT-ASH-LlNK-XBUG PAGE 11-27 
====================================================================================--=======--============================ 

11.2.8.2 CONSTANT INITIALIZATION DIRECTIVES 

The folloHing directives are used to initialize constants, 
labels, data, and text in source programs. They are EQU, 
BYTE, DATA, CONS, and TEXT. 

EQU - DEFINE CONSTANT 

Syntax definition: 

<label> EQU <exp> {<comment>} 

The EQU directive assigns a value to a symbol. The label 
field contains the symbol and the operand field contains the 
value. Use of the comment field is optional. The value 
must be consistent for each pass of the assembler. 

BYTE - INITIALIZE BYTE 

Syntax definition: 

{<label>} BYTE <exp1>{,<exp2>} •.. {<comment>} 

The BYTE directive defines values for one or more 
successive bytes of memory. Hhen the label field is used, 
the location at Hhich the assembler places the first byte is 
assigned to the label. 

The operand field contains one or more expressions 
separated by commas. There can be no embedded blanks nor 
external references. The assembler evaluates each 
expression and places the value at the current memory 
location as an 8-bit tHo's complement number. The memory 
address is incremented by one. Hhen truncation is required, 
the assembler prints a byte overfloH error (B) and places 
the rightmost portion of the value in the byte. The comment 
field is optional. 

FLAG 
REGO 
EMUL 

EQU 1 
EQU 'RO' 

EQU FLAG&1*256 

BYTE >07,>0A,>OD,O 
BYTE 'A', ·a· ,o 



========================================================================================================================= 
PDOS 2.4 DOCUHENTATION CHAPTER 11 ED!T-ASH-L!NK-XBUG PAGE 11-28 
========================================================================================================================= 

(11.2.8.2 CONSTANT !NITIALI2ATIDN DIRECTIVES continued) 

DATA - INITIALIZE WORD 

Syntax definition: 

{<label>} DATA <exp1>{,<exp2>} .•. {<comment>} 

The DATA directive defines values for one or more 
successive HQrds of memory. The assembler first advances 
the location counter to a Hard (even) boundary. Hhen the 
label field is used, the location at Hhich the assembler 
places the first Hard is assigned to the label. 

The operand field contains one or more expressions 
separated by commas. There can be no embedded blanks, but 
external references are alloHed if no arithmetic is 
performed on them. The assembler evaluates each expression 
and places the value in a Hard as a sixteen-bit tHo's 
complement number. The memory addresses is incremented by 
tHO. Hhen truncation is required, the assembler prints a 
numeric overfloH error (N) and places the rightmost portion 
of the value in the Hard. The comment field is optional. 

CONS - INITIALIZE 6 BYTE FLOATING POINT NUMBER 

Syntax definition: 

{<label>} CONS <fp #> {, <fp #>} ... {<comment>} 

The CONS directive defines floating point values for one or 
more successive 6-byte memory locations. The assembler 
first advances the location counter to a Hard (even) 
boundary. Hhen the label field is used, the location at 
Hhich the assembler places the first Hord is assigned to the 
label. 

The operand field contains one or more floating point 
expressions separated by commas. There can be no embedded 
blanks. The assembler converts each floating point number 
into the standard PODS 6-byte IBM excess 64 format and 

places the value in three consecutive Herds. The memory 
address is incremented by six. Hhen a conversion error 
occurs, the assembler prints a floating point conversion 
error (f) and places zeros in the three Herds. The comment 
field is optional. 

DATA 0,1,2, 'AB', '*'*256 

CONS 3.1459,1.234E-10,.0000D01 



~~-=============================================~==========================~========--==================----============== 
PODS 2.4 DOCUHENTATION CHAPTER 11 EDlT-ASH-LlNK-XBUG PAGE 11-29 

===================================----=================================================================--==--================ 

(11.2.9.2 CONSTANT INITIALIZATION DIRECTIVES continued) 

'1'EXT - INITIALIZE '1'EXT 

Syntax definition: 

{<label>} TEXT {-}{+} •• <'string'> {<comment>} 

The TEXT directive places one or .are characters in 
successive bytes of ~~emory. The assetnbler can optionally 
negate the last character of the string or append a null 
byte to the end of the string. Hhen the label field is 
used, the location at Hhich the assetlbler places the first 
character is assigned to the label. 

The operand field contains a string deli11ited by any 
pr;ntable character except a bln, 111inus, or plus sign. If 
the c01111ent field is not used, the closing del i11iter is 
optional. If a blank or control character is used as a 
delimiter, the assembler Hill print a text delimiter error 
(D) and the 1 ine Hi 11 be ignored. 

Each 11inus sign preceding the string decrements a counter, 
Hhich is initialized to zero. Each plus sign preceding the 
string increMnts the s8118 counter. The sign of the 
resulting counter determines hoH to process the string. If 

the resultant counter equals zero, no action is taken. If 
the counter is negative (llore minus signs than plus signs), 
then the last byte of the string is negated. If the counter 
is positive (more plus signs than 111inus signs), then an 
extra null byte is output after the end of the string. This 
has the 581118 effect as if the TEXT statement line Here 
follOHed by a BYTE 0 directive. 

NOTE: The length of the string IIIUSt not be so large that 
the entire source 1 ine exceeds 109 characters. No error 
111ssage Hill be output if the assellbler truncates a source 
line upon input. 

HES1 

HE 52 

HES3 

TEXT 'START PROCESS' 
BYTE >OA, >OD,O 

TEXT - $NEGATE TH' LAST BYTE$ 

TEXT +"TERMINATE HlTH Nll.L BYTE" 



========================================================================================================================= 
POOS 2.4 OOCUHENTATlON CHAPTER 11 EDlT-ASH-LlNI<-l<BUG PAGE 11-30 
========================================================================================================================= 

~~.2.8,3 LOCATION COUNTER DIRECTIVES 

The folloHing directives are used to alter the location 
counter during assembly, and to perform all necessary mode 
control, segment definition, and block assignment. They are 
AORG, RORG, OORG, PSEG, DSEG, BES, BSS, and EVEN. 

The directives AORG and RORG control the origin modes for 
code generation. Directives PSEG and DSEG select program 
relocatable and data relocatable location counters. The 
directive DORG disables object output. 

These directives allOH you to develop applications for RAM 
and EPROM systems using the same source files. This is 
accomplished by specifying in the source a program segment 
(for EPROM) and a data segment (for RAM). The LlNKer 
utility then.adjusts the tagged object for PODS or for 
burning into EPROM for application testing. 

The complete interaction of these directives as implemented 
in the assembler is defined in Table 11.2 Hhich fo110HS· 
OSEG. 

AORG - ABSOLUTE ORlGIN 

Syntax definition: 

{<label>} AORG <exp> {<comment>} 

The AORG directive places a value in the location counter 
and defines the succeeding locations as absolute. Object 
output is enabled. Hhen the label field is used, it is 
assigned the value that the directive places in the location 
counter. 

The operand field contains a Hell defined, absolute 
expression. lf the expression ;, not absolute, the 
assembler prints an expression mode error (e) and the line 
is ignored. Use of the comment field is optional. 

AORG >100 



======================================================================================================--================== 
PDOS 2.4 DOCUHENTAT!ON CHAPTER 11 EOlT-ASH-LlNK-XBUG PAGE 11-31 

===~==================================================================================================--================== 

(11.2.8.3 LOCATION COUNTER OlRECTlVES continued) 

RORG - RELOCATABLE ORIGIN 

Syntax definition: 

{<label>} RORG { <exp>} {<comment>} 

The' RORG directive places a value in the location counter. 
H encountered in absolute code, it also defines succeeding 
locations as program relocatable. The RORG directive 
enables output to the object file. Hhen the label field is 
used, it is assigned the value that the directive places in 
the location counter. The operand field is optional. The 
comment field may be used only Hhen the operand field is 
used. 

If the RORG directive appears in absolute or program 
relocatable code and the operand field is not used, the 
location counter is set to the current length of the program 
segment (PLEN) and the mode of the data that folloHs is 
program relocatable (P-REL). 

lf the RORG directive appears in data relocatable code 
Hithout an operand, the location counter is set to the 
length of the data segment (OLEN) and the mode of the data 
that follOHs remains data relocatable (0-REL). Hhen the 
operand field is used, the operand must be an absolute, 
program relocatable, or data relocatable expression. The 
expression can contains only previously defined symbols. 

lf the RORG directive is encountered in absolute code, a 
relocatable operand must be program relocatable (P-REL). If 

the RORG directive is encountered in relocatable code, the 
relocation type must match that of the current location 
counter. OtherHise, the assembler prints an expression mode 
error (e) and the line is ignored. 

Hhen the RORG directive appears in absolute code, it 
changes the location counter mode to program relocatable 
(P-REL) and replaces its value Hith the operand value. In 
relocatable code, the operand value replaces the current 
location counter value, and the mode of the location counter 
remains unchanged. 

Please verify Hith Table 10.2. 

RORG $ 

RORG $+>200 



==============;==-~~~=============~====================================================================================== 
PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASH-UNIH<BUG PAGE 11-32 
=============~==~=================~;===================================================================================== 

DIRECTIVE CURRENT LOCATION COUNTER MODE 

I AORG DUMMY P-REL DUHHY D-REL OUHHY 
AORG P-REL D-REL 

--------------+-------+-------+-------+-------+-------+--------: 
AORG <exp> [addr = <exp> ------------------------------>] I 

<exp> must 
be absolute 

[mode = ABS ------------------------------>] 
[reset DUMMY ------------------------------>] 

[PLEN = oldadr]* 
I [OLEN = oldadr]* I 

--------------+-------+-------+-------+-------+-------+--------: 
DORG <exp> (addr = <exp> -------------------------->] 

I 
I 

[mode = mode<exp> -----,-------------------->] 
[set DUMMY -------------------------->] 

[PLEN = oldadr]* 
[OLEN = oldadr]* 

--------------+-------+-------+-------+-------+-------+--------: 
RORG no expl [addr = PLEN] (no change) (no change) 

l [mode = P-REL] (no change) (no change) 
I [reset DUHHY ------------------------------->] 
+-------+-------+-------+-------+-------+--------· 

ABS <exp>l [addr = <exp> ------------------------------>] 

I 
I 

[reset DUMMY ------------------------------>] 
[mode = P-REL -------------->][mode = 0-REL ] 

[PLEN = oldadr]* 
[OLEN = oldadr]* 

+-------+-------+-------+-------+-------+--------1 
P-REL <exp>l [addr = <exp> -------------->] ( < error > ] 

I 
I 

[reset DUMMY -------------->) 
[mode = P-REL -------------->] 

[PLEN = oldadr]* 
+-------+-------+-------+-------+-------+--------: 

D-REL <exp>l ( <error> ] [ <error> ] (addr = <exp>] 
[reset DUMMY ] 
[mode = 0-REL] 

[OLEN = oldadr]* 
--------------+-------+-------+-------+-------+-------+--------: 
PSEG [addr = PLEN ------------------------------>] 

I 
I 

[mode = P-REL ------------------------------>] 
[reset DUMHY ------------------------------>] 

[OLEN = oldadr]* 
--------------+-------+-------+-------+-------+-------+--------: 
DSEG [addr = OLEN ------------------------------>] 

[mode = 0-REL ------------------------------>] 
[reset DUMMY ------------------------------>] 

[RLEN = oldadr]* 
--------------·-------·-------·-------·-------·-------·--------· 

TABLE J.J.. 2 LOCATION COUNTER DIRECTIVES 

Notes: P-REL means Program-Relocatable Mode 
D-REL means Data-Relocatable Mode 
ABS means Absolute Mode 
[RLEN = oldadr]* means 

RLEN = maximum (RLEN,oldadr) 
[OLEN = oldadr]* means 

OLEN = maximum (DLEN,oldadr) 
DUMMY = SET inhibits object output 
If an error occurs, ASH ;gnores l;ne. 



=====·=============·====================--====·======================================================--============ 
PDOS'.Z.4 DOCUMENTATION CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-33 
==================================================~==~=================================================================== 

(11.2.8.3 LOCATION COUNTER DIRECTIVES continued) 

DORG - DUMMY ORIGIN 

Syntax definition: 

{<label>} DORG <exp> {<comment>} 

The DORG directive places a value in the location counter 
and defines the succeeding locations as a dummy block. The 
assembler does not generate object code in dummy mode, but 
operates normally in all other respects. Hhen the label 
field is used, the label is assigned the value that the 
directive places in the location counter. 

The operand field contains either an absolute or 
relocatable expression. Any symbol in the expression must 
be previously defined. If not, the assembler prints an 
expression mode error (e) and the 1 ine is ignored. The 
value of the expression replaces the location counter and 
the mode of the expression becomes the mode of succeeding 
locations. 

Any of the follOHing directives reset the dummy flag and 
enable output to the object code file: AORG, RORG, PSEG, and 
DSEG. An example of the use of the DORG directive is 
alternating a 'RORG $' command Hith a 'DORG $' command. 
This HOUld cause the assembler to assign successive 
locations to the source code, but turn on and off the output 
to the object file. 

PSEG - PROGRAM SEGMENT 

Syntax definition: 

{<label>} PSEG {<comment>} 

The PSEG directive places a value in the location counter 
and defines succeeding locations as program relocatable. 
Hhen a label is used, it is as~igned the value that the 
directive places in the location counter. The operand field 
is not used and the comment field is optional. 

The location counter is loaded Hith the program relocatable 
segment length, PLEN. The assembler sets PLEN to zero at r the beginning of each pass, and updates it to the next 
available location Hhenever the program relative mode 
(P-REL) is exited. 

RORG $ 

DORG $ ; ~ OFF OBJECT 

RORG $ ; TURN .ON OBJECT 

RORG 0 

DSEG 

PSEG 



=====================================================================================================----=======------=== 
PDOS 2.4 DOCUHENTATION CHAPTER 11 EDIT-ASH-LlNK-XBUG PAGE 11-34 
========================================================================================================================= 

(11.2.8.3 LOCATION COUNTER DIRECTIVES continued) 

The assembler begins each assembly in program relocatable 
mode. P-REL mode is terminated Hi th any of the folloHing 
directives: 

AORG 
DORG Hhere mode of <exp> is not P-REL 
OSEG 

PLEN is updated to the maximum value previously attained by 
the location counter as a result of the assembly of any 
preceding block of program-relocatable code. The governing 
equation for PLEN Hhen exiting the P-REL mode is: 

PLEN =maximum (PLEN,oldaddr). 

DSEG - DATA SEGMENT 

Syntax definition: 

{<label>} OSEG {<comment>} 

The DSEG directive places a value in the location counter 
and defines succeeding locations as data relocatable. Hhen 
a label is used, it is assigned the value that the directive 
places in the location counter. The operand field is not 
used and the comment field is optional. 

The location counter is loaded Hith the data relocatable 
segment length, OLEN. The assembler sets OLEN to zero at 
the beginning of each pass, and updates it to the next 
available location Hhenever the data relocatable mode 
(D-REL) is exited. The assembler begins each assembly in 
program relocatable mode, and the only Hay to enter data 
relocatable mode is through the DSEG directive. D-REL mode 

is terminated Hith any of the folloHing directives: 

AORG 
OORG Hhere mode of <exp> is not D-REL 
PSEG 

OLEN is updated to the maximum value previously attained by 
the location counter as a result of the assembly of any 
preceding block of data relocatable code. The governing 
equation for OLEN Hhen exiting the 0-REL mode is: 

OLEN= maximum (OLEN,oldaddr). 
~\ 



. . . . ~. . 
~=====~~=================================================================================- ·======til'" =======~----=== 

POOS 2. 4 OOC~NTATION . OiAPTER 11 ~DIT-ASH-LINK-XBUG PAGE 11-35 
==================================================================================--===== = == i ====:==-==-===------

(11.2.8.3 LOCATION COUNTER DIRECTIVES continued) 

BES - BLOCK ENDING WITH SYMBOL 

Syntax definition: 

{<label>} BES <exp> {<COIIIIIIE!nt>} 

The BES directive advances the locati.on COU'lter according 
to the .val~ ,in the operand field. The label field syabol 
is assigned thei neH location counter value. 

The operand field contains a Hell defined, absolute 
expression that represents the number of bytes to be added 
to the location counter. OtherHise, the assembler prints an 
expression mode error (e) and the line is ignored. The 
c0111111ent field is optional. Note that the syabol is assigned 
the value of the location FOLLOHlNG the block. 

BSS - BLOCK STARTING WITH SYMBOL 

Syntax definition: 

{<label>} BSS <exp> {<c0111111ent>} 

The BSS directive advances the location counter according 
to the value in the operand field. The label field symbol 
is assigned the old location counter value before it is 
uPdated. 

The operand field contains a Hell defined, absolute 
expression that represents the number of bytes to be added 
to the location counter. OtherH1se, the asselllbler prints an 
expression mode error (e) and the 1i ne ;s ignored. The 
comment field is optional. Note that the symbol is assigned 
the value of the location at the BEGlNNlNG of the block. 

BEND BES 20 

BUFFER BSS > 100 
DATA 0 

;GET IUTEI} 



========================================================================================================================= 
PDOS·2~4 DOCUMENTATION CHAPTER 11 EDlT-ASH-UNI<-lCBUG PAGE 11-36 
==•=====================================================================================================~================ 

(11.2.8.3 LOCATION COUNTER DIRECTIVES continued) 

EVEN - WORD BOUNDARY 

Syntax definition: 

{<label>} EVEN {<comment>} 

The EVEN directive moves the location counter to the next 
Hord boundary (even byte) address. If the location counter 
is already on a Herd boundary, the line is ignored. 

The label field symbol is assigned the location counter 
value before any adjustments are made. The operand field is 
not used and the comment field is optional. 

Use of an EVEN directive preceding or folloHing a machine 
instruction or a DATA directive is redundant since the 
assembler advances the location counter to a HOrd address 
for those instructions 

HE 51 

TEXT -'MESSAGE' 
EVEN 
TEXT 'HELP' 
BYTE 0 

;ON EVEN BOUNDARY 



========================================================================================================================= 
POOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-37 
=================================~======================================================================================= 

11.2.8.4 OUTPUT CONTROL DIRECTIVES 

The follOHing directives control the output of the 
assetnbler by forcing page throHs, turning on and off the 
listing, and defining extended operation codes. They are 
PAGE, T!TL, LIST, UNL, and DXDP. 

PAGE - EJECT PAGE 

Syntax defjnition: 

{<label>} PAGE {<comment>} 

The PAGE directive causes the assembler to continue the 
source program listing on a neH page. The PAGE directive is 
usually not printed in the source listing, but the line 
counter is incremented. HOHever, Hhen a label is used, the 
current value of the location counter is assigned to the 
label and the line is printed to the source listing file. 
The operand field is not used and use of the comment field 
is optional. 

The assembler automatically pages the source listing after 
56 lines are output to the source listing file. 

TITL - PAGE TITLE 

Syntax definition: 

{<label>} TITL <'string'> {<comment>} 

The TITL directive supplies a title to be printed in the 
heading of each page of the source listing. This directive 
is not printed in the source listing unless the label field 
is used or there is an error. HoHever, the line counter is 
incremented. 

Hhen a label is used, the current value. of the location 
counter is assigned to the label. The operand field 
contains a character string of up to 50 characters delimited 
by any character. Hhen more than 50 characters are entered 
betHeen delimiters, the assembler retains only the first 50 
characters as the title and prints a truncation error (t). 
The comment field is optional. 

The title is printed on all pages folloHing the TITL 
directive until another TITL directive is processed. If the 
TITL directive is the first line of a source program, the 
title appears at the head of the first page of the listing. 

SUB1 ;SUBROUTINE 11 
PAGE 

suez· ;SUBROUTINE 12 

TITL 'DEBUG PROGRAM, REV 1.0' 



========================================================================================================================= 
PDOS 2.4 DOCUMENTATION CHAPTER 11 EOIT-ASH-LlNK-XBUG PAGE 11-38 

========================================================================================================================= 

(11.2.8.4 OUTPUT CONTROL DIRECTIVES continued) 

LIST - LIST SOURCE 

Syntax definition: 

{<label>} LIST {<comment>} 

The LIST directive restores printing of the source to the 
LIST file if it has been disabled by the UNL directive. 
This directive is not printed in the source listing unless 
the label field is used, but the line counter 1s 
incremented. 

Hhen a label is used, the current value of the location 
counter is assigned to the label. The operand field is not 
used and use of the comment field is optional. 

UNL - NO SOURCE LIST 

Syntax definition: 

{<label>} UNL {<comment>} 

The UNL directive disables the output of the source listing 
to the LIST file. This directive is not printed in the 
source listing unless a label is used, but the line counter 
is incremented. 

Hhen a label is used, the current value of the location 
counter is assigned to the label. The operand field is not 
used and use of the comment field is optional. 

Use of the UNL directive to inhibit printing reduces both 
assembly time and the size of the source listing. 



:============~=========~=========--===-- ~-----==----================================================================== 
PODS 2.4 DOCUMENTATION CHAPTER 11 EDlT-ASH-LlNK-XBUG PAGE 11-39 

:;:==--==========================-==-================================================================--==================== 

(11.2.8.4 OUTPUT CONTROL DIRECTIVES continued) 

DXOP - DEFINE EXTENDED OPERATION 

Syntax definition: 

{<label>} DXOP <syllbol >, <exp> { ( COIIIIIel'lt)} 

The DXOP directive uaociate.s a sylllbol Nith an extended 
operation instruction (XOP). tflen the label field is used, 

the etrrent value in the location cDLnter is assigned to the 
label. 

The operand field contains a sy•bol follOHed by a COlle and 
an expression ranging fr011 0 to 15. The c011111ent field is 
optional. 

The assembler assigns the sylllbol to an extended operation 
specified by the expression. Hhen the s}'llbol appears in the 
operation field of a 1 ine, the assetlbler inserts the defined 
XOP as the opcode for that line. HoHever, the assellbler 
uintains only one syllbol for each XOP at any one time. If 
there is no COIIII8 in the operand field, the assellbler prints 
a •issing operand error (X) and the line is igno;-ect. 

NOTE: A sylllbol assigned to an extended operation HAY also 

be used as a regu 1 ar 1 abe 1 , and the asselllb 1 er keeps their 
eanings distinct. 

DXOP OUT,13 

OUT il.ASEL(R2) 



========================================================================================================================= 
PODS 2.4 DOCUMENTATION CHAPTER 11 EOlT-ASH-LlNK-XBUG PAGE 11-40 

========================================================================================================================= 

11.2.9.5 LINKAGE DIRECTIVES 

The folloHing directives are used to provide linkage 
information for the LINKer and include optional files in the 
source stream. They are DEF, REF, and COPY. 

DEF - EXTERNAL DEFINITION 

{<label>} OEF <symbol>{,<symbol>} ••• {<comment>} 

The DEF directive outputs to the object file one or more 
symbols and entry addresses for reference by to other 
programs. Hhen the label field is used, the current value 
of the location counter is assigned to the label. 

The operand field contains one or more symbols, separated 
by commas. These symbols must be Hell defined on the first 
pass of assembler. OtherHise, the assembler prints an 
illegal symbol error (S) and the symbol is not output to the 
object file. The use of the comment field is optional. 

The OEF directive causes the assembler to output to the 
object file a tag character indicating the mode of the 
symbol, a four character hexadecimal value, and the six 
character name of the symbol. This information is used by 
the LINKer utility in combining program modules Hhich are 
assembled separately. 

REF - EXTERNAL REFERENCE 

Syntax definition: 

{<label>} REF <symbol>{,<symbol>} ••• {<comment>} 

The REF directive outputs to the object file one or more 
symbo 1 s to be reso 1 ved by the LINKer uti 1 i ty. Hhen the 
label field is used, the current value of the location 
counter is assigned to the label. 

The operand field contains one or more symbols, separated 
by commas. The comment field is optional. 

No arithmetic can be performed on a REF'd symbol. The 
value appearing in the source listing Hhen an externally 
referenced symbol occurs is the address of the symbol in the 
symbol table, and is not the value output to the object 
hle. 

LBL1 
LBLZ 
LBL3 

DEF LBL 1, LBLZ, LBL3 
HOY R1,RZ 
EQU $ 
HOY R4,R5 

REF LBL 1,LBL2,LBL3 
DATA LBL 1,LBL2 
HOV iLBL3,RO 



========================================================================================================================= 
PODS 2. 4 DOCUHENTA TION CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-41 

========================================================================================================================= 

(11.2.9.5 LINKAGE DIRECTIVES continued) 

The assembler sutputs to the' object file a '3' tag 
character follo..ed by the six characters of the name of the 
symbol. This information is used by the LINKer utility in 
combining program modules Hhich are assembled separately. 

COPY - INCLUDE FROM FILE 

Syntax definition: 

{<label>} COPY <file> {<comment>} 

The COPY directive temporarily SH1tchea from the source 
file to a neH file for text inputs. The operand field 
contains a PODS file name from Hhich subsequent source 
statements are to be read. Hhen the label field is used, 
the current value in the location counter is assigned to the 
label. The comment field is optional. 

The COPY directive leaves the current source file open, 
opens the COPY <file>, and reads source code from the COPY 
file until finished. If the file is not found, the 
assembler prints a copy file error (C) and the source input 
file remains unchanged. 

A COPY file terminates Hith either an end-of-file, a LINK 
directive, or an END directive. If an end-of-file is 
encountered in a COPY file, the assembler closes the COPY 
file and resumes reading source code from the original 
source file beginning Hith the line immediately follDHing 
the COPY directive. 

If a LINK directive is encountered in a COPY file, the 
assembler closes the COPY file and processes the LINK 
command as usual. The neH file becomes the COPY file. 

If an END directive is encountered in a COPY file, the 
assembler processes the end directive as usual. Both the 
COPY file as Hell as the original file Hhere the COPY 
directive Has processed are closed and the assembly process 
is terminated. 

If the COPY directive is encountered in a COPY file, the 
assembler prints a file error message and the line is 
ignored; that is, COPY file cannot be nested. 

START COPY ASH2:SR 
COPY ASH3:SR 
COPY ASH4: SR 
END START 



=======================================================================--================================================ 
POOS 2.4 OOCUHENTATlON CHAPTER 11 EDIT-ASH-LlNI<-XBUG PAGE 11-42 
========================================================================================================================= 

11.2.8.6 CONDITIONAL ASSEMBLY DIRECTIVES 

The folloHing directives are used in conditional assembly 
of source files. This alloHs various configurations of a 
program to be assembled from the same sources by changing 
only a feH flags. They are IFZ, IFN, OUP, and OPT. 

IFZ - IF ZERO, GOTO SYMBOL 

Syntax definition: 

{<label>} IFZ <exp>,<symbol> {<comment>} 

The lFZ directive causes the assembler to skip source 
statements if the expression equals zero. Hhen the label 
field is used, the current value of the location counter is 
assigned to the label. 

The operand field contains a Hell defined expression and a 
symbol, separated by a comma. Hhen the expression evaluates 
to zero, subsequent source statements are treated as 
comments until a source line is read Hhich contains <symbol> 
in its label field. Assembly then resumes normally 
beginning Hith the line containing <symbol>. Hhen the 
expression evaluates to a nonzero value, the assembler 
ignores the directive and assembly continues normally H1th 
the next source statement. 

If the expression is not absolute, the assembler prints an 
expression mode error (e), and the line is ignored. If 
there is no comma, or if the expression is not Hell defined, 
the assembler prints an illegal symbol error (S), and the 
line is ignored. 

IFN - IF NONZERO, GOTO SYMBOL 

Syntax definition: 

{<label>} lFN <exp>,<symbol> {<comment>} 

The IFN directive causes the assembler to skip source 
statements if the expression is nonzero. Hhen the label 
field is used, the current value of the location counter is 
assigned to the label. 

EHUL EQU 1 ;SET EMULATOR FLAG 
RORG 0 

• 
LAB1 L1 RO, >FOOD ; COHHON CODE 

IFN EHUL,LAB2 ;EMULATOR VERSION? 
BL aSUB1 ;N, 00 REAL CALL 

• 
LAB2 ; CONTINUE COHHON 

·~ 



,.,. 
I 

=========================================--=============================================================================== 
PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-43 

========================================================================================================================= 

(11.2.8.6 CONDITIONAL ASSEMBLY DIRECTIVES continued) 

The operand field contains a Hell defined expression and a 
symbol, separated by a comma. Hhen the expression evaluates 
to a nonzero value, subsequent source statements are treated 
as comments unti 1 a source 1 ine is read Hh1ch contains 
<symbol> in its label field. Assembly then resumes normally 
beginning Hith the line containing <symbol>. Hhen the 
expression evaluates to zero, the assembler ignores the 
directive and assembly continues normally Hith the next 
source statement. 

If the expression is not absolute, the assembler prints an 
expression mode error (e), and the line is ignored. If 
there is no comma, or if the expression is not Hell defined, 
the assembler prints an illegal symbol error (5), and the 
line is ignored. 

DUP - DUPLICATE LINE 

Syntax definition: 

{<label>} DUP <exp> {<comment>} 

The DUP directive causes the assembler to duplicate the 
next line. Hhen the label field is used, the current value 
of the location counter is assigned to the label. 

The operand field.contains a Hell defined expression Hhich 
contains the duplication count. The range of the count is 
from 0 to 32767. If the expression equals zero, the next 
line read from the source file is treated as a comment. lf 
the expression is nonzero, the assembler processes the next 
line read from the source file, <exp> number of times. 

lf the line to be duplicated modifies the location counter, 
then the label field on the line must not be used, or the 
assembler issues a multiply-defined symbol error (H) each 
time the line is assembled. Use of the comment field is 
optional. 

The DUP directive is useful Hhen the size of a buffer in a 
program needs to be varied each time the program is 
assembled. For this example, an assembly time constant is 
placed in the operand field and a DATA 0 directive 
immediately folloHs the DUP directive. 

If the expression is not absolute, the assembler prints an 
expression mode error (e), and the line is ignored. lf the 
expression is not Hell~defined, the assembler prints an 
illegal symbol error (S), and the line is ignored. 

BSIZ EQU 7 

* 
BUFFER DUP BSIZ 

DATA 0 

;SET BUFFER SIZE 

;ZERO BUFFER 



================================================================--======================================================== 
PODS 2.4 DOCUHENTATlON CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-44 
========================================================================================================================= 

(11.2.8.6 CONDITIONAL ASSEMBLY DIRECTIVES continued) 

OPT - SET OPTION FLAG 

Syntax definition: 

{<label>} OPT <char>=<exp>{,<char>=<exp>} ••• {<comment>} 

The OPT directive sets or resets various assembly flags. 
Hhen the label field is used, the current value of the 
location counter is assigned to the label. 

The operand field contains one or more equations, separated 
by commas. Each equation consists of an option character, 
an equal sign, and a Hell defined expression. The assembler 
evaluates the expression and places its value in the 
associated option flag. The comment field is optional. 

The assembler resets all option flags to zero at the 
beginning of each pass. Therefore, in order to select any 
of the available options, at least one OPT directive Hith a 
nonzero expression must be executed by the assembler. 

If the expression is not absolute, the assembler prints an 
expression mode error (e), and the line is ignored. If the 
option character is not found, or if the expression is not 
Hell defined, the assembler prints an undefined symbol error 
(U), and the 1 ine -is ignored. 

The option flag and character pairs in the assembler are: 

Character Flag Function 

? QFLG Assemble if ? nonzero 
# PFLG Assemble right or left half 
c CFLG Output checksum tags 
L LFLG Expanded list options 
R RFLG Register cross reference 
s SFLG Punch symbol table to object 
X XFLG Output XREF to LIST file 

NOTE: Currently, QFLG, PFLG, LFLG, RFLG, SFLG, and XFLG 
are supported by the assembler. Currently LFLG acts like 
the LIST and UNL directives. These flags are defined as 
folloHs: 

QFLG (?) 

PFLG (#) 

Conditional assembly 
Alternate assembly 

OPT 7=EHUL&1 
OPT R=1 

; ASSEMBLE EHUL 
;XREF REG 



,.,.., 
\. 

========================================================================================================================= 
PODS 2.4 DOCUMENTATION CHAPTER 11 EDlT-ASH-LINK-XBUG PAGE 11-45 
==================================================z====================================================================== 

(11.2.8.6 CONDITIONAL ASSEMBLY DIRECTIVES continued) 

Any source stateeent can be prefaced Hith either a question 
1181"1< ('?) or a pound sign (#). lf present, this special 
character must appear in the first posUion of the source 
line, Hith the label field beginning in the second position. 
1f the first character of a source line is neither a 
question ntark nor a pound sign, the assembler processes the 
1 ine normally. 

lf the first character of the 1 ine is a question mark, then 
the assembler checks the option flag associated Hi th ('?), 
namely QFLG. If the value of the QFLG is nonzero (set), the 
assembler skips over the ('?) and assembles the remainder of 
the line normally. If the flag is zero (reset), the source 
line is treated by the assembler as a co•ent. 

If the first character of the line is a pound sign, then 
the asselbler checks the option flag associated Hith (#), 
namely PFLG. lf the value of the PFLG is nonzero (set), the 
assembler skips over the (#) and assembles the line 
normally. lf the flag is zero (reset), then the assembler 
looks for another pound sign, (#), Hi thin the source 1 ine. 
If a second# is found b~yond the first character, then the 
remainder of the line immediately follOHing is assembled as 
the 1i ne of source code. lf a second # is not found, then 
the entire source 1 ine is treated by the assembler as a 
co.ent. In other HOrds, for source lines containing tHO 
pound signs, if QFLG is zero, the right half is assembled, 
and if QFLG is nonzero, the left half is assembled. 

LFLG (L) List control flag 

Currently, LFLG is associated Hith the LIST and UNL 
directives. If LFLG is zero, the assembler outputs the 
source code the the list file. If LFLG is nonzero, the 
assembler inhibits output to the list file. 

Future use of LFLG Hill alloH selecting condensed listings 
of DATA, BYTE, DUP, IFZ, IFN, ?, or macro functions of the 
assembler. 

RFLG (R) Register cross reference 

Hhenever the RFLG is nonzero, occurrences of the register 
labels (RO-R15) are included in the cross reference listing. 
The assembler does not include registers in the cross 
reference unless the RFLG is set nonzero. This feature can 
be turned on or off so that the registers used Hithin a 

'? 

'? 

OPT '?=FLG 
A R1,RZ 
AI RZ,BIAS 
HOV RZ,R3 
BL ~DEBUG 

;SET '? FLAG 

; IF FLAG I ADD BIAS 
;SAVE 
;DO DEBUG 

LFLAG EQU 1 ;SET LIST BITS 

* 
OPT L=LFLAG&1 ;LIST #1 (UNL) 

OPT L=LFLAG&2 ;LIST #2 (LIST) 

OPT L=LFLAG&3 ;LIST #1 & #2 (UNL) 

OPT R=1 
HOV R1,R2 

OPT R=O 
HOV R1,R2 

;START REG XREF 

; STOP REG XREF 

,..., selected portion of the program can be cross referenced. 
\ 



=======================================================~================================================================= 
PODS 2.4 DOCUMENTATION CHAPTER 11 EOlT-ASH-L!NK-XBUG PAGE 11-46 
=============================================================--==~======================================================= 

(11.2.8.6 CONDITIONAL ASSEMBLY OIRECTIVES continued) 

SFLG (S) OUtput symbol table to object file 

After. the END directive has been processed on the second 
pass and the entry has been output to the object file, the 
assembler checks SFLG. lf SFLG is zero at the end of the 
assembly, the object file is closed normally and the 
assembler exits to PDOS. If SFLG is nonzero at the end of 
assembly, every symbol in the symbol table is output to the 
object file, as if each symbol defined in the program had 
been placed in a DEF directive. Undefined and multiply 
defined symbOls are not output; neither are externally 
referenced (REF) symbols. The symbol table in the object 
file can be used by future symbolic debuggers. 

Since PDOS only loads until an entry tag (1 or 2) is read, 
and since the symbol table is output after the entry tag, 
this option does not affect normal PODS loading. 

XFLG (X) Cross reference to LIST file 

lf the XFLG is nonzero at the end of the first pass, and if 
there NBS no XREF file option specified Hhen the assembly 
NBS initiated, and if there Has a LlST file option 
specified, then the assembler performs a cross reference 
during the second pass and outputs it to the LIST file, 
instead of to a separate XREF fi 1e. This feature cannot be 

turned on or off, but is determined by the value of XFLG at 
the end of the first pass. 

OPT S=1 

OPT X=1 
HOV R1,RZ 

OUTPUT SYHBOLS 

; OUT XREF TO LIST 



===================================================~===================================================================== 

PDOS 2.4 DO.CUHENTATlON CHAPTER 11 EOIT-ASH-LINK-XBUG PAGE 11-47 
========================================================================================================================= 

11.3 LINK - MODULE LINKER 

The PODS LINK utility combines separately genera~ed object 
modules into a single linked output module. The linker 
accepts modules that have been generated by ASH, BASIC, a 
compiler, or a previous partial link. 

The major function of the LINK utility is to provide symbol 
resolution for external references and definitions (REF and 
DEF assembler directives). The LINK program builds lists of 
DEF and REF tag symbols. These are resolved by matching DEF 
tag symbols Hith the REF tag symbols and outputting neH 
overlay tags Hith the correct values. 

Another function of the LINK utility is to define program 
and data segments to prescribed boundaries for eventual 
EPROH/RAH partitioning. Program segments are defined by the 
PSEG assembler directive, and data segments by the OSEG 
assembler directive. If these directives are not used, the 
entire object module is tagged as a program segment. 

Not all REF tags need to be resolved. A partial 11nk is 
possible, Hhich can then be included in a subsequent linking 
process. 

The LINK utility prompts Hith an '*' for a command. lf a 
<carriage return> is entered, the folloHing summary of the 
UNK commands is output to help you: 

COMMAND DESCRIPTION 

0, <FILE> OPEN OUTPUT FILE 
1,<FlLE> LINK FILE 
2{, <FILE>} LIST UNDEFINED REFS 
3{. <FILE>} LIST MULTIPLY DEFINED DEFS 
4{, <FILE>} LIST LINK HAP 
5 OUTPUT PARTIAL LINK 
6{, <ADR>} OUTPUT OVERLAYS AND START TAG 
7 EXIT TO PDOS 
8{, <ADR>} LIST/SET PSEG BASE ADORESS 
9{, <AOR>} LIST/SET DSEG BASE ADDRESS 
10 RESTART 
11,<FL>,<S>,<P> LOAD BASIC BINARY MODULE 
12{,<H>} O=NO DSEG, 1=NDRHAL, Z=DSEG=>PSEG 
13,<FILE> LIBRARY 
14{,0EFAULT} SET DEFAULT TASK NUMBER 
15{,FLAG} CODE FLAG 

r The follOHing discussion defines the LINK commands in 
detail: 

Symbol resolution 

EPROM/RAM partitions 

Partial link 



====================================================================-=--================================================= 
PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-"ASH-UNic-JCBUG PAGE 11-48 

===--======--================================================================================================-=-==========~ 

(11.3 LINK - HODULE LINKER continued) 

*O,<file> OPEN OUTPUT FILE. An output file is 
specified for linked object. 

*1,<file> LINK FILE. The <file> is read and 
processed to the output file. lf a 
previous input file has been opened, it 
is first closed. 

*2{,<file>} LIST UNDEFINED REF'S. All unresolved 
REF tags are listed to your console. 
These can be optionally listed to 
<file>. 

*3{,<file>} LIST MULTIPLY DEFINED, DEF'S. All 
multiply defined DEF's are listed to 
your console. These can be optionally 
listed to <file>. 

*4{,<file>} OUTPUT LINK HAP. The full link map, 
including lOT's, start tag addresses, 
and module DEF's and REF's, is listed to 
your console. This can be optionally 
listed to <file>. 

*5 OUTPUT PARTIAL LINK. The linker system 
DEF's are dumped to the output file such 
that they can be recreated in a 
subsequent link process. 

*6,<addr> OUTPUT START TAG AND CLOSE. A start 
tag specified by <addr> is output and 
the output f i 1 e c 1 osed. lf no parameter 
is specified, a start tag of >0000 is 
used. 

*7 EXIT TO PODS. All files are closed and 
the linker exits to PODS. 

*B{,<addr>} SET PROGRAM BASE ADDRESS. A program 
base address is set for program linking. 
This applies only to the PSEG assembler 
directive. 

*9,<addr> SET DATA BASE ADDRESS. A data base 
address is set for program linking. 
This applies only to the DSEG assembler 
directive. 

*10 RESTART. All files are closed and all 
tables set to null. 

OPEN OUTPUT FILE 

LINK FILE 

LIST UNDEFINED REF'S 

LIST HULTIPLY DEFINED DEF'S 

OUTPUT LINK HAP 

OUTPUT PARTIAL LINK 

OUTPUT START TAG AND CLOSE 

EXIT TO PODS 

SET PROGRAM BASE ADDRESS 

SET DATA BASE ADDRESS 

RESTART ~ 
I 



==-==== --===============================--===--===========--============================================================== 
PG0s 2.4 DOCUHENTATlON CHAPTER 11 EDIT-ASH-LlNK-XBUG PAGE 11-49 

=--============================================--=============----===========================================----============= 

(11.3 LINK - HOOULE LINKER continued) 

*11,<FlLE>,<S>,<P> LOAD BASIC BINARY RUN HOOULE 

*12, <H> 

LOAO BASIC BINARY RUN MODULE. A BASIC 
binary file is 1 inked to the output 
file. Since the file does not contain 
any Tl 9900 tags, the linker IIUSt 
generate Tl object code. Special CEF 
tags, symbols, n values are also 
generated for 1 inking the BASIC module 
to the runtime execuhve IIOdule R$HODA. 
The symbols generated are R$0Bxx, 
R$0Exx, R$PHxx, and R$PTxx, Hhere xx is 
defined by LINK 14 co.and. Each syllbol 
is incremented by one after each BASIC 
binary IIOdule is loaded. The RAH size 
is specified in 1K byte increunts by 
<S> and gives the values for R$DBxx and 
R$DExx. The assigned console port 
l'll.lllber is specified by <P> and is the 
value of R$PTxx. 

DSEG TAG HODE. Once the system 
parameters are defined, it is desirable 
that the output 110dule contain only 
EPROH or progr• seg~~~~nt data in 
standard Tl object tags. This 1118ans 
that DSEG tags and data Hhich are no 
1 anger of any va 1 ue are dropped for the 
resulting object code. If the <H> value 
equals 1, then DSEG information is 
passed through normally. A zero value 
disables DSEG information frOIB being 
output to the output file. A value of 2 
translates all DSEG relocation codes 
into PSEG relocation codes, so that the 
the application can be loaded into RAH 
over the PDOS system for debugging 
purposes. 

*13,<file> LOAD LIBRARY FILE. The specified 

*14{<T>} 

library <file> is read and processed to 
the output file. If a previous input 
file has been opened, it is first 
closed. 

SET OEFAUL T TASK NUHBER. The value <T> 
ranges from 0 to 15, and is used as the 
task number for the next LINK 11 COIIII8Ild 
(link BASIC module). If no parameter 
<T> is specified, the current default 
task nuaber is printed. 

DSEG TAG HODE 

0 = No OSEG 
1 =Normal, pass through 
2 = DSEG -> PSEG for debugging 

*12 
DSEG HOOE = >0000 

LOAD LIBRARY FILE 

SET DEFAULT TASK NUHBER 

*14 
TASK NUMBER = >0000 



========================================================================================================================= 
PDOS 2.4 DOCUMENTATION CHAPTER 11 EOIT-ASH-UNK-XBUG PAGE 11-50 
========================================================================================================================= 

(11.3 LINK - MODULE LINKER continued) · 

*15{,flag} CODE FLAG. The value {flag} is used to 
enable and disable object output. A 1 
enables, Hhile 0 disables all object 
code to the output file. 

Example: .LINK/4 
· LINKER R2. 4 

-~ 
COMMAND DESCRIPTION 

O,<FILE> OPEN OUTPUT FILE 
1, <FILE> LINK FILE 
2{, <FILE>} LIST UNDEFINED REFS 
3{, <FILE>} LIST MULTIPLY DEFINED DEFS 
4{, <FlLE>} LIST LINK HAP 
5 OUTPUT PARTIAL LINK 
6{, <ADR>} OUTPUT OVERLAYS AND START TAG 
7 EXIT TO PODS 
S{,<ADR>} LIST/SET PSEG BASE ADDRESS 
9{,<ADR>} LIST/SET DSEG BASE ADDRESS 
10 RESTART 
11,<FL>,<S>,<P> LOAD BASIC BINARY MODULE 
12,<H> O=NO DSEG, 1=NORHAL, 2=DSEG=>PSEG 
13,<FILE> LIBRARY 
14{,DEFAULT} SET DEFAULT TASK NUMBER 
15{,FLAG} OBJECT MODE, O=OFF, 1=0N 
*12.0 
HAS >0001 
*9. >4000 
HAS >0000 
*O.HODULE 
*1.R$HOOA/4 
*1,R$HOOB/4 
*1.R$MOOC/4 
*1.R$HOOF/4 
*11.PRGH0.2,1 
HOOULE SIZE: 260 
*11.PRGH1.2.0 
MODULE SIZE: 164 
*1,TASKOZ 
*1 .SUBRIIO 
*1.SUBRI1 
*4.LINKHAP 
*§ 
START TAG = >0000 
*Z 
·-

CODE FLAG 
*15 
OUTPUT MODE = 0001 



========================================================================================================================= 
PODS 2.4 DOCUMENTATION CHAPTER 11 EDlT-ASH-LlNK-XBUG PAGE 11-51 

========================================================================================================================= 

11.4 XBOG DEBUGGER 

The XBUG debugger is an assembly language debugger Hhich is 
loaded into memory using the ALOAD utility. XBUG is entered 
via a 'GO <entry address>'. The first thing XBUG does is 
alter XOP 12 for breakpoints. Four breakpoints are 
avanable as Hell as memory dumps, single stepping, and 
various inspect and change modes. 

X8UG prompts Hith a question mark (?) and accepts single 
letter commands. These letters are folloHed by up to three 
parameters, depending on the command. All numbers are 
hexadecimal. Parameters are separated by either commas or 
blanks. The folloHing illustrates hoH to load and execute 
XBUG: 

.ALOAO XBUG 
*lDT=XBUG2.4 
*ASS AOR=>0070 

LAST ENTRY ADR=>6000 
.GO >6000 
XBUG R2.4 
?<CR> 
A {PC} 
8 {l}{adr} 
C from, to, into 
D from{, to} 
E base 
F from,to,data{+} 
G {PC}{,HS}{,SR} 
L FILE 
M {adr}{ ,adr} 
p {PC} 

Q {base},{bits} 
R {I} 
s 
U {unit} 
H {HP} 

X 
Y {SR} 
z 
? 

Breakpoint XOP = 12 



=================================================--======================================================================= 
PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT -ASH-llNIHCBUG PAGE 11-52 
===================================================================================~===================================== 

(11.4 XBUG DEBUGGER continued) 

Assemble 

The 1 ine by 1 i ne assemb 1er a 11 ows T 1 9900 asselllb 1 y 1 anguage 
instructions to be assembled and loaded into memory. The 
address is aut0118tica11y set to the task's entry point, 
unless the {addr} parameter is specified. 

Breakpoint 

$TEXT 
l<sdr> 
+constant 
Xbinary numbers 
>hex address 
$ is PC location 

Load ASCll text into memory 
Assemble at neH address 
Load decimal constant 
Load binary 

The breakpoint command lists, sets, and clears the four 
breakpoints supported by XBUG. Breakpoints may be placed on 
any non-execute (X) instruction. The number of HOrds for 
the instruction is automatically calculated when it is set. 

The 'B' command wHh no arguments lists all current 
breakpoints. The '8' command followed by a number from 1 
through 4 clears that particular breakpoint. 

The 'B' command followed by a number and an address sets a 
breakpoint. The instruction is disassembled and stored in 
the breakpoint table. Hhen a 'G' (go execute), 'S' (go 

single step), or a 'X' (Exit with breaks) command is 
executed, the breakpoint addresses are loaded with an XOP 12 
instruction. 

Hhen one of the points is executed, the XOP 12 routine in 
XBUG performs a break, and the XBUG menu is entered. The 
break comes after the instruction is executed. 

Copy memory 

The block of memory from <adr1> through <adr2> is copied 
into another block of memory beginning at <adr3>. 

A {addr} 

B 

B I 
B I,<AOR> 

C <adr1>,<adr2>,<adr3> 
c FROM I TO' INTO 



~ 
r 
\ 

========================================================================================================================= 
PODS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-53 
========================================================================================================================= 

(11.4 XBUG DEBUGGER continued) 

Disassemble 

Memory from <adr1> to <adr2> is disassembled to the screen 
in Tl 9900 assembly language format. The instruction 
address is folloHed by a colon, the hexadecimal instruction 
code(s), and the ASCII assembly language instruction. If 
parameter <adr2> is omitted, only one instruction is 
disassembled. Striking a character during a block 
disassembly causes the output to pause for easier vieHing. 

Set disassembly base 

The E command sets a base address Hhich is subtracted from 
all disassembly addresses. This allOHs easier correlation 
of the disassembly Hith the source listing. 

Find data 

Memory contents from <adr1> through <adr2> are searched for 
the byte or HOrd of <data>. Byte data is specified by 
folloHing <data> Hith a plus sign (+). OtherHise, only 
Herds are compared. The addresses Hithin the block that 
match, <if any>, are listed, Hith TABs, to the screen. 
Striking a character during the address listing causes the 
output to pause for easier vieHing. 

Go Execute 

XBUG begins target program execution Hith the 'G' command. 
Optionally, the program counter, HOrkspace, and/or status 
register can also be specified by using the <adr1>, <adr2>, 
and <adr3> parameters, respectively. If no parameters 
folloH, the current PC, HS, and SR are used. The 
breakpoints, if any, are loaded Hith the XOP 12 trap before 
control is passed to the target program. 

Load file 

The 'L' command loads the PODS file named <file> as if it 
Here simply being run from PODS. The assembly language 
program can be typed either '08' or 'SY'. The program entry 
address is printed, but the program is not executed. 

0 <adr1>{,<adr2>} 
0 FROM{, TO} 

E <base> 

F <adr1>,<adr2>,<data>{+} 
F FROM,TO,DATA{+} 

G {<adr1>}{,<adr2>}{,<adr3>} 
G {PC}{,HS}{,SR} 

L <file> 
L FILE1 



========================================================================================================================= 
PDOS Z.4 DOCUHENTATlON CHAPTER 11 EDlT-ASH-LlNK-XBUG PAGE 11-54 
========================================================================================================================= 

(11.4 XBUG DEBUGGER continued) 

Memory IAC 

Memory can be dumped, inspected, or changed Hith the 'H' 
command. One or no arguments enters an inspect and change 
mode. A <CR> opens or closes a location. A <SP> closes a 
location (if open) and moves to the next location. a <Al>, 
goes indirect and <"'C> returns to the XBUG menu. lf tHO 
addresses are given, the contents of the memory from <adr1> 
through <adrZ> is displayed in both hexadecimal and in 
ASCll. Striking a space bar pauses the display for easier 
vieHing. 

CRU IAC 

The CRU 1 i nes are examined and changed by the 'Q' command. 
The CRU base address is specified by <base> • The number of 
CRU bits is specified by <bits>. (Default is 16.) The 
output consists of the CRU address follOHed by the number of 
bits being examined and the contents. A <SP> moves forHard 
and <ESC> moves backHard. A <"'C> exits to XBUG menu. 

Program Counter 

The user program counter is examined and changed Hith the 
'P' command. 

Register IAC 

User Horkspace registers are dumped Hith a single 'R' 
command. A specific register is opened if the 'R' is 
fo110Hed by a register number in hex (e.g. RF displays the 
contents of register 15). A <SP> moves to the next register 
and <ESC> to·the previous. A <"'C> returns to the XBUG menu 
and a <"'!> goes indirect and enters the memory modify mode. 
(See the 'H' command). 

H {<adr1>}{,<adrZ>} 
H {BEGIN}{ ,END} 

Q {<base>}, (<bits>} 

P {<adr>} 
P {PC} 

R {I} 



:;============;====================================--======================~=============================================== 
·PD05 2.4 ODCUHENTATlON CHAPTER 11 EDlT-ASH-L!NK-XBUG PAGE 11-55 

=======================================--=======--========================================================================= 

(11.4 XBUG DEBUGGER continued) 

Single step 

The '5' command enters the target program in a single 
stepping mode. Breakpoints are loaded, along HHh the PC, 
HP, and ST registers. The first instruction is disassembled 
and displayed, and XBUG Haits for a c0111111and, Hhich consists 
of a single character. Legal COIIIIII8nds are: 

<space> Execute instruction, shoH next. 
"C Cancel and return to XBUG menu. 
"R Dump registers. 
"5 Dump memory snapshot. 

The address is follOHed by a colon and the me.ory contents 
of the current PC. The disassembled mnemonics are also 
displayed along Hith the contents of the source and 
destination operands before execution. lf a <space> is 
entered, a temporary break is loaded beyond the instruction, 
the instruction is executed, and control is returned to XBUG 
through XOP 12. The results of the operation are then 
displayed, along Hith the resulting status register. XBUG 
then H&Hs for another command in single step mode. All 
PDOS calls, and all other XOPs, are not stepped through, but 
execute in real time, transparent to the debugger. The 
execute instruction 'X' cannot be stepped through; a user 
breakpoint must be used instead. lf a user break is single 
stepped through, control returns to the XBUG menu. 

A control C <"C> cancels single stepping Hithout executing 
the current instruction and control returns to the XBUG 
menu. A control R <"R> dumps to the screen the current 
contents of all the registers and then H&its for another 
single step command. A control 5 <"5> dumps a block of 
memory to the screen as a memory snapshot. The limits of 
the block that is dumped are set by the last previous block 
limits used with the 'H' command. To set the snapshot 
limits, simply exit from single step with a "C, dump the 
desired range Hith 'H' (only a few lines of dump is best), 
and return to single stepping with an '5'. 

s 



====- ------ ------ -- -==----======-== -=========================--============ 
PODS 2. 4 DOCUMENTATION CHAPTER 11 EOlT-ASH-LlNK-XBUG PAGE~'11-Ei6 

==================-· - ·- -===-=-=-======--======--====--=--:---===============--==================:= 

(11.4 XBUG DEBUGGER continued) 

set UNI'l' 

The PDOS output unit is set Hith the 'U' COIIIII8nd. All 
subsequent output is directed to <unit>. This is helpful · 
Hhen spooling debug output to either a printer (via a $TTA 
driver) or a file using the 'SU' command of PODS. The 'U' 
c:oaand in XBUG is idenhcel to perfonaing a 'UN' c0111118nd 
frOII PODS. 

WOrkspace 

The user Horkspece pointer is exMined a"ld changed with the · 

'H' COIDII8nd 

Exit to PDOS W/Breaks 

lCIIJG retlrnS to PODS with the ')(' COIIII8nd and sets all 
breakpoints. If the target progr• is run fro11 PODS Hith 
the 'GO' co.and, the first encountered breakpoint Mill 
return to the XBUG lllmU. 

Status Register 

The user status register is examined and changed with the 
'Y' COIIIIIand. 

Exit to PDOS 

lC8UG returns to PD0S Hith the 'Z' COIIIIIIand Hithout setting 
the breakpoints. 

U <unit> 
U3 

H {HP} 

)( 

y {SR} 

z 

;Output to file 

~ 
I 



============================--=======--==================================================================================== 
POOS 2. 4 DOCUMENT A T!ON CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-57 
========================================================================================================================= 

(11.4 XBUG DEBUGGER continued) 

XBUG examp 1 e: 

.ALOAO XBUG 

*IOT=XBUG2.4 
*ASS AOR=>0070 

LAST ENTRY AOR=>6000 
.GO >6000 
XBUG RZ.4 
? 
A {PC} 

B {l}{adr} 

C from, to, into 
D from{. to} 
E base 
F from,to,data{+} 
G {PC}{,HS}{,SR} 
L FILE 
H {adr}{,adr} 
p {PC} 
Q {base},{bits} 
R {I} 

s 
u {unit} 

H {HP} 

X 
y {SR} 
z 
?A.AOOO 
AOOO: OZEO 
A002: 9000 
A004: 2FSB 
AOOB: A100 
ADOS: 04CO 
AOOA: 04C1 
AOOC: A040 
AODE: 0580 
A010: 17FO 
A01Z: 
A100: OAOO 
A102: 4045 
A104: 5353 
A106: 4147 
A108: 4500 
A114: 

LHPI >9000 

+>2FSB 
+>A100 
CLR RO 
CLR R1 
A RO,R1 
INC RO 
JNC >AOOC 
/A100 
+>OAOO 
$MESSAGE 

Load XBUG 

Entry point is at memory address >6000 

List XBUG menu 

Instant assemble at address >AOOO 

Control C breaks to XBUG 



============--==========================--================================================================================= 
PDOS 2.4.DOCUHENTAT10N CHAPTER 11 EDIT-ASH-LlNK-XBUG PAGE 11-58 

========================================================================================================================= 

(11.4 XBUG DEBUGGER continued) 

?DAOOO,A01Q 
AODO: OZEO BODO LHPl >8000 
A004: 2F5B XOP *R11,R13 
A006: A100 A RO,R4 
AOOB: 04CO CLR RO 
AOOA: 04C1 CLR R1 
AOOC: A040 A RO,R1 
AOOE: 0580 lNC RO 
A010: 17FD JNC >AOOC 
?PAOOO 
PC=7220 AODO 
?~ 

AOOO: 02EO 8000 LHPI >8000 
A004: 2F5B XOP *R11,R13 5=0288 0=2E47 
HE55AGE R=2E47 
AOOB: 04CO CLR RO D=3730 R=OOOO 
AOOA: 04C1 CLR R1 0=0009 R=OODO 
AOOC: A040 A RO;R1 5=0000 0=0000 R=OOOO 
AOOE: 0580 INC RO 0=0000 R=0001 
A010: 17FO JNC >AOOC 
AOOC: A040 A RO,R1 5=0001 0=0000 R=0001 
AOOE: 0580 INC RO 0=0001 R=OOOZ 
A010: 17FD JNC >AOOC 
AOOC: A040 A RO,R1 5=0002 0=0001 R=0003 
AOOE: 0580 INC RO D=0002AC 
?81,A012 
A012: 5E53 SZC8 *R3,*R9+ 
?§ 
»BREAK-1 
A012: 5E53 SZC8 *R3,*R9+ 
?B 

RO=OOOO R1=8000 RZ=4C41 R3=5354 R4=2045 R5=4E54 R6=5259 R7=2041 
RB=4452 R9=3D3E RA=3630 RB=3030 RC=0009 RD=ZE47 RE=4FZO RF=3E36 
HP=8000 PC=A012 5R=3005 

?F0,2000,7F 
1788 1802 

?F0,2000,7F+ 
OOCF 052E 129F 1789 19A2 1814 1818 188C 
1803 

?e. 
PC=A012 
?tf 
HP=BOOO 
?y 
SR=3005 

Disable from >AOOO to >A010 

Examine PC 

D005ingle step 
0005 

0005 
0005 
0005 
2005 
coos 
C005 
C005 
C005 
coos 
C005 

Set break point 

Continue execution 

Dump registers 

Find all >007F constants from >0000 to >2000 

Find all >7F constants from >0000 to >2000 

Examine PC 

Examine Horkspace 

Examine status register 



========================================================================================================================= 
POOS 2.4 DOCUMENTATION CHAPTER 11 EO!T-ASH-L!NK-XBUG PAGE 11-59 

===========================;========================================~==================================================== r-
\ (11.4 XBUG DEBUGGER continued) 

?L,SENOH Load file SENOH 
ENTRY AODR=7220 
?~ R=OOOO 3005ingle step 
A012: 5E53 5ZCB *R3,*R9+ 5=4400 0=3044 R=3944 0005 
A014: 3E20 6475 OIV i>6475,RB 5=C03B 0=4452 
?flliQ Set PC to address >7220 
PC=A014 7220 
?~ R=4452 DOOHontinue Hith single stepping 
7220: 2FOO XOP *RO,R15 0=3E36 R=3E36 0005 
7222: 120A JLE >7238 0005 
7239: 0203 2400 Ll R3,>2400 0=5354 R=2400 C005 
723C: 0204 2408 Ll R4,>2408 0=2045 R=2408 coos 
7240: 0205 223E Ll R5,>223E D=4E54 R=223E C005 

7244: C020 0000 HOV iii>OOOO,RO 0=0000 R=2FOC coos 
7248: 1505 JGT >7254 coos 
7254: 0225 0032 AI R5,>0032 0=223E R=2270 C005 
7258: 8103 C R3,R4 5=2400 0=2408 R=2408 0005 
725A: 14ED JHE >7236 0005 
725C: 0073 HOVB *R3+,R1 S=FFFF 0=0000 R=FFOO 8005 

725E: 11FA JLT >7254 8005 
7254: 0225 0032 AI R5,>0032 0=2270 R=22AZ C005 
7269: 8103 C R3,R4 5=2401 0=2408 R=2408 0005 

~ 
725A: 14EO JHE >7236 0005 

r 725C: 0073 HOVB *R3+,R1 S=FFFF O=FFOO 
7E7220 Set disassembly base of >7220 

?~ R=FFOO 0001-iontinue 

003C: 0073 HOVB *R3+,R1 5=FFFF O=FFOO R=FFOO 8005 

003E: 11FA JLT >0034 8005 
0034: 0225 0032 AI R5,>0032 0=22AZ R=2204 C005 
0039: 8103 C R3,R4 5=2402 0=2408 R=240B 0005 
003A: 14EO JHE >0016 0005 
003C: 0073 HOV8 *R3+,R1 5=FFFF O=FFOO R=FFOO 8005 
003E: 11FA JLT >0034 8005 

0034: 0225 0032 AI R5, >0032 0=2204 R=2306 C005 

0038: 8103 C R3,R4 5=2403 0=2408 R=2408 0005 

003A: 14EO JHE >0016 0005 

003C: 0073 HOV8 *R3+,R1 S=FFFF D=FFOO R=FFOO 8005 

003E: 11FA JLT >0034 8005 
0034: 0225 0032 AI R5, >0032 0=2306 R=233B C005 
0038: 8103 C R3,R4 5=2404 0=2408 



====~===============================================--===========================================================-----==== 
POOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-60 

=================--======================================================================================================= 

(11.4 XBUG DEBUGGER continued) 

?HO.AO 
0000: 2FDC 2306 2F7C 159E 2F7C 159E 2FDC 15FO /\1.11 •• 11 •• 1\.p 
0010: 2F7C 020E 2F7C 020E 2F7C 020E 2F7C 020E Jl ... ll.'"/1 ... 11." 
0020: 2F7C 02DE 2F7C 159E 2F7C 159E 2F7C 159E /l ... /j •• /1 .. 11 •• 
0030: 2F7C 159E 2F7C 159E 2F7C 159E 2F7C 159E /1 .. /l .. /I .. 11 .. 
0040: 2F9C 189C 2F9C 1890 2F9C 1886 2F9C 18A8 / ••• / ••• / •• 6/ •• ( 
0050: 2F9C 1A28 2F9C 182A 2F9C 1BAB 2F9C 197E / •• (1 .. *1 •• (1 ... 

0060: 2F9C 408C 2F9C 595E 2F9C 5954 2FDC 320A /.H./.Y .. /.YT/\2. 
0070: SD2A 63AE 2FDC 17DC 2FDC 1736 2FDC 1758 m*c./\ •• /\.6/\.X 

0080: A55A FFFF 2BDD 6200 2FDC 1740 02EF 0070 XZ •• +]b./\.i.o.} 
0090: AAOO 9830 0078 2E64 0080 0180 OEOO OAOO *· .=.x.d •••••••• 
OOAO: OA40 OABO OACO 0800 0019 0001 OOOA 0014 .a ... a •••....... 

Dump memory from >0000 to >OOAO 

?l Exit to XBUG monitor 
.LT 
TASK PAGE TIME TB HS PC SR BH EH CRU PORT 

*0/0 0 3 >7020 >719A >04C2 >0005 >7000 >EOOO >0080 >0001 
.GO >6000 
XBUG R2.4 

?~ 
0000: 2FOO 
0002: 1ZOA 
0018: 0203 2400 
001C: 0204 2408 
0020: 0205 223E 

?£ 

XOP *RO,R15 
JLE >0018 
Ll R3, >2400 
Ll R4,>2408 
Ll R5,>223E 

R=2408 
0=003E R=003E 

0=104A R=2400 
0=4780 R=2408 
0=7122 

0005 
0005 
0005 
coos 
C005 




