PBOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-1

mammsmmssmn=

CHAPTER 11

EDIT-ASM-LINK-XBUG

This chapter explains the use of the PDOS development
software tools EDIT, ASM, LINK, and XBUG. Assembly and
BASIC applications are written, assembled, 1linked, and
debugged using these utility programs.

Included with PDOS are three editors: a virtual screen
editor (JED), @ non-virtual screen editor (JEDY), and a
small character editor (EDIT). The 9900 assembler (ASM),
the module 1linker (LINK), and the resident debugger (XBUG)
are also necessary for application development.

B T =11 1 11-2
11.1.1 JED - VIRTUAL SCREEN EDITOR.............. 11-2

11.1.2 JEDY - NONVIRTUAL EDITOR........00veesa.11-11

11.1.3 EDIT - CHARACTER EDITOR...... B b e ¥4

11.2 ASM -~ PDOS 9900 ASSEMBLER..........cocvieeerennnn. 1-17
11.2.1 USING THE ASSEMBLER........co0vueee.. e 1117

11.2.2 ASSEMBLY LANGUAGE FORMAT............. ... 11-20

11.2.3 CONSTANTS.covnevvnennn. esesecencnnen 11-21

11.2.4 SYMBOLS.......ceiiiiiiiiiiiiniiaeenenann 11-21

11.2.5 OPERATORS. .. cvvinieirinnnrencnceanncans 11-21

11.2.6 EXPRESSIONS....cvverrennnnnnosncncens . 11-22

11.2.7 ASSEMBLER OBJECT TAGS........... ceeeenna11-22

11.2.8 ASSEMBLER DIRECTIVES............ cesecs .. 11-24
11.2.8.1 REQUIRED DIRECTIVES........... 11-25

11.2.8.2 CONSTANT INLITIALIZATION....... 11-27

11.2.8.3 LOCATION COUNTER........ceuus. 11-30

11.2.8.4 OUTPUT CONTROL.......c000vunes 1-37

11.2.8.5 LINKAGE......oveverranncnnne. 11-40

11.2.8.6 CONDITIONAL ASSEMBLY......... .11-42

11.3 LINK -~ MODULE LINKER...........u.. cesssssscessene .11-47
11.4 XBUG - RESIDENT DEBUGGER.......coovvviuvennrnnenes 11-51
TABLE 11.1 ASSEMBLER OBJECT TAGS.....cvcvuerenncesns I N &

é

TABLE 11.2 LOCATION COUNTER DIRECTIVES........co0vnee. .11-32

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-2

11.1 EDITORS

11.1.1 JED - VIRTUAL SCREEN EDITOR

JED is a screen oriented editor designed for terminals wWith
24 x 80 character displays and cursor addressing. JED
features numerous text editing capabilities in REPLACE and
INSERT modes. A1l cheracter editing is immediately
displayed on the screen; the screen alWays reflects the true
image of the text being edited. Consequently, you are not
likely to become confused or lost as is the case with
character and line editors.

The first tWenty-three lines of the display are used to
Window into the editor text buffer. The twenty-fourth line
displays prompt and status messages associated With JED
commands. The cursor indicates the place at which at
transactions take place, including character insertion,
deletion, and replacement. In INSERT mode, text is inserted
by simply typing the desired characters. The text is
adjusted to the right and below automatically. In REPLACE
mode, buffer characters are overwritten as new characters
are entered. In both modes, control keys are used to invoke
special editing functions.

JED is a virtual editor, not limited to just the available
memory space for editing large files. If the edit buffer
exceeds user task space, JED moves text to and from
temporary disk files. The management of the temporary files
is transparent to the user. Two files are maintained on the
system disk for this purpose. They are defined
automatically when JED begins execution.

JED has a priority structure for processing editor
functions. JED commands have the highest priority and
override all other functions. The screen update processor
has second priority and updates only those characters rhich
change on the screen. After each command, this process is
restarted from the top of the screen. The lonest priority
task is a time-of-day clock in the lower right hand corner
of the screen. The clock is updated only when JED is idle.

Screen oriented editor

REPLACE and INSERT modes

23 line window
1 status line

INSERT mode

REPLACE mode

Virtual editor

JEDT

~

-
>
w
x
~

EDIT BUFFER

JEDB

VIRTUAL MEMORY

T ——

PDOS 2.; DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-3

(11.1.1 JED - VIRTUAL SCREEN EDITOR continued)

Cursor movement and other special commands are initiated by Control character commands
control characters. (Control characters are indicated by a

"~ gymbol preceding a character.) Some terminals already

have function keys that can be used directly for cursor

movement. The escape key is a special control function

which is used to delimit multiple key commands and set JED

modes.

Certain commands require only the control character; others 24th status line
require a string of characters, such as a file name. JED

prompts on the 24th line for those requiring further

information. MWhen the prompt is given, the string is

entered and then terminated Wwith an <esc>. If a mistake is

made while typing the string, then the <rubout)> key erases

the last character entered. The command 1is aborted by

entering a “C or by deleting the nhole string with <rubout>

and entering an <esc).

The last command string for GET FILE, WRITE FILE, and Last command recall
SEARCH commands is recalled by repeating the command key

twice. Two recall buffers are maintained, one for the GET

*G> and WRITE <“W> FILE commands, and the other for the

SEARCH <~S> and <“B> commands. Thus, to write an edited

file back to the original file, a <*H> (*H> <esc) (V)

sequence prompts for WRITE FILE, recalls the file name,

delimits the commend, and verifies the action. Likewise,

the last search command is repeated by entering <*S) (*S)

<esc).

A1l file operations by the JED editor require an operator Operator verification
verification. This is done by JED prompting with a 'VERIFY'

in the Tower right hand corner of the screen after the (esc)

key has been entered. A <V)> or <v) Will change the 'VERIFY'

to 'VERIFIED' and the command 1is executed. Any other

cheracter changes 'VERIFY' to 'NOT VERIFIED' and the command

is aborted.

If the output file is not defined, JED prompts with ‘CREATE Auto-create
VERIFY'. A «V> or <v> key changes the prompt to ‘CREATE

VERIFIED', defines the new file, and writes to that file.

This applies to OUTPUT BLOCK and WRITE FILE commands.

PDOS 2.4 DOCUMENTATION

CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-4

(11.1.1 JED - VIRTUAL SCREEN EDITOR continued)

JED COMMANDS

<*A)>

«“B

0

D>

INSERT FROM UP BUFFER. The INSERT FROM
UP BUFFER command inserts text from the
'UP' buffer, beginning at the cursor.
(See <*W.)

BACKWARD SEARCH. The BACKWARD SEARCH
initiates a text search, starting at the
cursor to the beginning of the text
buffer. The command prompts With "~
Search for '“ after which the text
string is entered. If the string is
found, the cursor is positioned on the
leftmost character of the text string
and a RECENTER TEXT command is executed.
If an <esc> 1is 1immediately entered,
another search is initiated for the same
text string. Otherwise, the search mode
is exited.

If the string is not found, the message
"Not Found" is displayed, search mode is
exited, and the cursor is left
unchanged.

CANCEL. The CANCEL commend terminates
a current text search, aborts a command
prompt, and interrupts an infinite macro
sequence.

DEFINE MACRO. The DEFINE MACRO command
enters and exits macro definition mode.
Macro definition mode is indicated by
the presence of the word "MACRO" in the
lower right hand corner of the screen.
In macro mode, each entered key (except
<~D> and <“E>) is stored in the MACRO
BUFFER. Commands are executed as the
macro is defined. The macro definition
is completed by entering another <*D>.

Macro definition mode 1is automatically
terminated if the macro buffer
overflows. The macro buffer holds 256
characters. Only one macro is can be
defined at a time. The macro definition
is deleted by entering <*D> <+D>.

INSERT FROM UP BUFFER

BACKKARD SEARCH

- Search for ' <string> '

Not Found '<(string>’

CANCEL

Get file ' ¢string> ~C'

DEFINE MACRO

MACRO

PDOS 2.4 DOCUMENTATION

CHAPTER 11 EDIT-ASM-LINK-XBUG

(11.1.1 JED -~ VIRTUAL SCREEN EDITOR continued)

B>

(AF)

(4l ¢}

*H>

<+

(A

EXECUTE MACRO. The EXECUTE MACRO
command executes the command strings
currently stored in the macro buffer.
Each command is recalled and interpreted
as if it had been entered from the
keyboard.

FIND POINTER. The FIND POINTER command
locates the editor pointer and leaves
the cursor immediately to the right of
the pointer, (see <¢~P> command). The
text is recentered on the screen. If no
pointer exists in the text, the message
‘No pointer in text' is displayed.

GET FILE. The GET FILE command, when
VERIFIED, reads a file into the editor
buffer. The command first clears the
edit buffer, reads in the text, and
places the cursor at the beginning of
the buffer.

MOVE LEFT. The MOVE LEFT command moves
the cursor 1left one character in the
edit buffer. HWhen used in conjunction
With the <(esc> key, it moves the cursor
to the beginning of the 1line. The
cursor wWill not move past the beginning
of the line. A tab field is treated as
one character.

TAB. Your screen is divided into 10
zones or tab stops, consisting of eight
characters each. HWhen a TAB is entered,
the cursor advances to the next tab
stop. |

MOVE DOWN. The MOVE DOWN command moves
the cursor down one display line. Khen
used in conjunction with the <esc) key,
the cursor is moved down 11 lines. The
cursor moves directly down unless 1) it
moves into a tab field, or 2) it moves
dorin past the end of the next line. In
either case, the cursor then moves left
to the beginning of the tab field or the
end of the line. The screen scrolls up
when the cursor attempts to move down
past the 23rd line.

EXECUTE MACRO

FIND POINTER

No pointer in text

GET FILE

Get file ' <string> '

MOVE LEFT

TAB

MOVE DOWN

VERIFY

PDOS 2.4 DOCUMENTATION

CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-6

(11.1.1 JED - VIRTUAL SCREEN EDITOR continued)

K>

<AL

<CR>

“N>

<0

(P>

MOVE UP. The MOVE UP command moves the
cursor up one display line. Hkhen used
in conjunction with the <esc> key, the
cursor is moved up 11 lines. The cursor
moves directly up unless 1) it moves
into a tab field, or 2) it moves up past
the end of the previous line. In either
case, the cursor then moves left to the
beginning of the tab file or the end of
the line.

The screen scrolls dorn when the cursor
attempts to move up past the first line.
The cursor cannot move above the
beginning of the text.

MOVE RIGHT. The MOVE RIGHT command
moves the cursor right one character.
Hhen used in conjunction with the <esc>
key, the cursor is moved to the end of
the current line. The cursor wWill not
move past the end of the line.

CARRIAGE RETURN. Each line is
terminated by a <CR>.

NEW BUFFER. The NEH BUFFER commend,
when VERIFIED, causes the editor to
clear the edit buffer and reinitialize
all flags.

OUTPUT BLOCK. The OUTPUT BLOCK
commend, when VERIFIED, outputs all text
between the cursor and the pointer to
the specified file, (see <*P> command).

PLACE POINTER. The PLACE POINTER
commend inserts a special character
called a pointer into the text buffer.
This pointer is displayed as a """. The
pointer and the cursor define a segment
of text which can be written to the disk
<~0) or internal UP buffer <+U>, and/or
deleted <*\>. 1f the pointer already
exists in the edit buffer, the <P
command deletes the old pointer and then
inserts a ned pointer at the cursor
position. To get rid of it, simply
delete it.

MOVE UP

MOVE RIGHT

CARRIAGE RETURN

NEW BUFFER

New buffer

OUTPUT BLOCK

Output cursor to Pointer

PLACE POINTER

VERIFY

VERIFY

-

POOS 2.4 DOCUMENTATION

CHAPTER 11 EDLT-ASM-LINK-XBUG

(11.1.1 JED - VIRTUAL SCREEN EDITOR continued)

<0

<R

(A9

T

(Sl 12

QUIT. Hhen VERIFIED, the QUIT command
returns you to the PDOS monitor. All
files associated wWith the editor are
closed.

RECENTER TEXT. The RECENTER TEXT
command recenters the text around the
cursor in the middle of the screen (line
12).

SEARCH FORWARD. The SEARCH FORWARD
command searches the text buffer for a
specific text string. The command
prompts with "Search for ‘", after which
the text string is entered. If the
string is found, the cursor is
positioned to the right of the text
string and a RECENTER TEXT commend is
executed. If an <esc> 1is immediately
entered, another search is initiated for
the same text string. Otherwise, the
search mode is exited.

1f the string is not found, the message
‘Not found' is displayed and search mode
is exited.

TOP OF BUFFER. The TOP OF BUFFER
commend moves the cursor to the
beginning of the edit buffer.

COPY TO UP BUFFER. The COPY TO UP
BUFFER command copies the text between
the cursor and the pointer into an
internal temporary buffer called the up
buffer. If the text length is less than
2565 characters, then the message 'I got
it' is displayed. Otherwise, the
message ‘'OVERFLOW' is displayed and the
string is truncated in the buffer. The
up buffer 1is inserted into the edit
buffer at the cursor wWith the <“A
command (see *A commend). If there is
not pointer in the buffer, then ‘No
pointer in text' is displayed.

QulIT

RECENTER TEXT

SEARCH FORWARD

Search for ' <string’

Not found ' <string> '

TOP OF BUFFER

COPY TO UP BUFFER

I got it

OVERFLOW

No pointer in text

QUIT VERIFY

PDOS 2.4 DOCUMENTATION

CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-8

(11.1.1 JED - VIRTUAL SCREEN EDITOR continued)

Ll M

(*HW)

%)

<AY)

2>

*\)

P

[Salad

CONTROL CHARACTER INSERT. The <*V»
character causes the next entered
character to be inserted in the edit
buffer, regardless of its command
definition. This allows control
characters to be entered into the edit
buffer. Because control characters are
not displayable, they are assigned
regular character representations and
appear as such in the text. HWhen
searching for the character, you must
remember to use the <*V)> before the
control character and not the displayed
character.

WRITE FILE. The HKWRITE FILE command,
when VERIFIED, writes the edit buffer to
the specified file.

TYPE AHEAD CANCEL. The TYPE AHEAD
CANCEL command clears the PDOS character
input buffer.

INSERT FILE. The INSERT FILE command,
when VERIFIED, reads and inserts the
specified file into the text buffer
beginning at the cursor. The cursor is
placed at the beginning of the inserted
text.

BOTTOM OF BUFFER. The BOTTOM OF BUFFER
commend moves the cursor to the end of
the edit buffer.

DELETE BLOCK. The DELETE BLOCK
command, when VERIFIED, deletes the
segment of text between the cursor and
the pointer, including the pointer.

CLEAR TO END OF LINE. The CLEAR TO END
OF LINE command deletes the text from
the cursor to the end of the line.

DELETE LINE. The DELETE LINE command
deletes the text from the cursor to the
end of the line, including the carriage
return.

CONTROL CHARACTER INSERT

“A = ! ~1 = <TAB»
!AB = NER.
AC=# K=+
Ao:s AL:

“E =% “M = <CR»
‘F=§8 N =,
6="' 0=/
AH-_—(Ap =

WRITE FILE

TYPE AHEAD CANCEL

INSERT FILE

BOTTOM OF BUFFER

DELETE BLOCK

CLEAR TO END OF LINE

DELETE LINE

*a
“R
*5
AT =
AU =
Av =
AH =
X

"
O NS> WN

Y
~Z
*l
“\
*

AN

now u n
@D oA .

POQS. 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-9

(11.1.1 JED - VIRTUAL SCREEN EDITOR continued)

> DELETE RIGHT. The DELETE RIGHT command
deletes the character to the right of
the cursor.

<(rubout> DELETE LEFT. The DELETE LEFT command
deletes the character to the left of the
cursor.

ESCAPE FUNCTIONS

The escape key has two functions. First, the <esc> is used
to end the file name or search string parameter for the
<*G>, <*0>, <*H>, and ¢<*S> commands. The string is then
terminated With a single quote and the editor continues.

The second function of the <esc> key involves JED modes and

PDOS access. The single character cursor move commands
(¢*HY, <ALy, <~J>, <*K>) can be changed

to multiple character moves by entering the <esc> key before

the command control key. The editor remains in this mode

until a key other than <~J> or <*K> is entered.

The REPLACE and INSERT modes are selected wWith the two
character commands <esc> <*“R> and <esc) <~I>. A PDOS
directory listing is displayed by entering <esc) <(*A).
These and other <esc> commands are 1listed below. Any
character following an <esc), other than those listed, cause
the <esc> to be ignored.

<esc> <~A> LIST DIRECTORY. The LIST DIRECTORY
command allows you to examine the disk
directory contents without exiting the
editor. The prompt, “"List directory'",
is issued, and you input a list
parameter string, just as With the ‘LS’
command of PDOS, and close it wWith an
<esc>. The specified file directory is
scrolled to the screen. KWhen the 1list
is completed, the message, ‘'Strike any
key :', 1is displayed. The next key
struck is not processed by JED, but the
screen is cleared and then refreshed to
display the edit buffer again.

DELETE RIGHT

DELETE LEFT

<esc> terminates parameter string

<(esc> selects JED modes

LIST DIRECTORY

List directory’

Strike any key :

POOS 2.4 DOCUMENTATION

CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-10

(11.1.1 JED - VIRTUAL SCREEN EDITOR continued)

<(esc>

<esc>

(esc’

{esc’

<(esc’

<esc’

(esc?

¢E>

“H»

D

d

K>

<AL

R

INFINITE MACRO. The INFINITE MACRO
mode wWill repeat the editor macro until
either an error occurs or a <*C> is
entered.

JUMP LEFT. The JUMP LEFT command moves
the cursor to the beginning of the line.
(Left arrow)

INSERT MODE SELECT. The INSERT MODE
SELECT command causes characters to be
inserted into the text string while all
characters to the right and down ere
automatically adjusted. (This is the
default mode.)

JUMP DOWN. The JUMP DOWN command moves
the cursor down eleven lines. This is
used to scan the text quickly. (Down
arrou)

JUMP UP. The JUMP UP command moves the
cursor up eleven lines. (Up arramw)

JUMP RIGHT. The JUMP RIGHT commend
moves the cursor to the end of the line.
(Right arrow)

REPLACE MODE SELECT. The REPLACE MODE
SELECT command allows characters under
the cursor to be overwritten instead of
moving the old cheracters to the right
and inserting the new ones.

INFINITE MACRO

JUMP LEFT

INSERT MODE SELECT

JUMP DOWN

JUMP UP

JUMP RIGHT

REPLACE MODE SELECT

PO0S 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-11

-

\

11.1.2 JEDY - NONVIRTUAL EDITOR

JEDY is a non-virtual memory implementation of the JED
editor. A1l features of JED are retained, wWith the
exception that editing must be done completely within user
memory. When the internal memory limits are exceeded, a
‘BUFFER FULL' message is printed by JEDY.

JEDY is advantageous where disks are often swapped in and
out. Also, a larger buffer can be accommodated since the

virtual memory handlers have been omitted.

Additions to the JEDY editor include:

<esc> <*B> FREE BYTE COUNT. The FREE BYTE COUNT FREE BYTE COUNT
command reports to the console the
number of bytes remaining in the buffer. Free bytes =

When this count becomes zero and you

enter another character, JEDY reports a

‘BUFFER FULL' error, rings the terminal

bell, and ignores the character input.

The only commands accepted from then on
f"” are movement and deletion commands.

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-12

===

11.1.3 EDIT - CHARACTER EDITOR

The EDIT program is a character oriented editor. Single or
double character commands, optionally preceded by a number,
allow you to edit a text file in memory. EDIT can be exited
and re-entered without destroying the buffer.

A chaeracter buffer is used for string editing. An
imeginary pointer indicates where in the buffer all editing
tokes place. This pointer is easily moved around wWithout
disturbing the buffer data.

A file can be read in by EDIT when it is run from PDOS by .EDIT FILE1
simply following EDIT with the desired file name. PDOS *GIFILE1YGI$
loads the EDIT utility and then EDIT opens the file for *

input (Gl<filename>), yanks in a page (Y), and closes the

file (GI).

EDIT prompts for all commands with a '*' character. The
first character of each string entered is the command byte.
Commands are terminated with the <esc)> key which echoes as a
‘$'. Most commands have tWo parts in which case the ¢esc)
is also used to delimit the arguments. Commands are not
executed unit a double <esc)> is entered. Commands can be
chained together as long as the double <esc)> is not entered.
Once a double <¢esc> is entered, execution begins. The
execution of the command 1ine can be interrupted by a ¢*C>.

EDIT file storage is page oriented. Data is read from an
input file until either a form feed <L) or end-of-file is
found. An output file then receives the edited data. The
normal output commands again place the form feed between
pages. However, this can be overridden for special cases.

-

A\

PDOS'2;4 DOCUMENTATION

CHAPTER‘11 EDIT-ASM-LINK-XBUG

PAGE 11-13

(11.1.3 EDIT - CHARACTER EDITOR continued)

The EDIT commands are defined as follows:

C<s1>¢$¢s2>

6I¢s»

Gl

GO<¢s>

#1

APPEND NEXT PAGE. The next page from
the input file is appended to the end of
the edit buffer. A form feed <¢*L> s
not inserted. The pointer is placed at
the beginning of the new page.

MOVE TO BEGINNING OF TEXT. The pointer
is placed at the beginning of the edit
buffer.

CHANGE. A forward search is done for
<s1> from the current buffer pointer.
1f found, <31’ is replaced by <s2>, The
pointer is placed at the beginning of
the changed string. If <s1> is not
found, the pointer is left unchanged.

CHARACTER DELETE. # characters are
deleted from the edit buffer, beginning
at the pointer.

GET FOR INPUT. The PDOS file specified
by <s> is opened for input. If a
previous file was already open, it is
first closed.

CLOSE INPUT FILE. If a file s
currently open for input, it is closed.

GET FOR OUTPUT. The PDOS file
specified by <¢s> is opened for output.
1f a previous file was already open, it
is first closed.

CLOSE OUTPUT FILE. If a file is
currently open for output, it is closed.

RETURN TO PDOS. EDIT exits to the PDOS
monitor.

INSERT BYTE. Control characters
(including a <~C> and <esc)) can be
inserted into the edit buffer by
preceding the insert command with the
decimal equivalent of the character.

APPEND NEXT PAGE

MOVE TO BEGINNING OF TEXT

CHANGE

CHARACTER DELETE

GET FOR INPUT

CLOSE INPUT FILE

GET FOR OUTPUT

CLOSE OUTPUT FILE

RETURN TO PDOS

INSERT BYTE

PDOS 2.4 DOCUMENTATION

CHAPTER 11 EDIT-ASM-LINK-XBUG

o o e e o e o e

PAGE 11-14

(11.1.3 EDIT - CHARACTER EDITOR continued)

I¢<s) INSERT STRING. The string

(8> is INSERT STRING

inserted into the edit buffer beginning

at the pointer. The string

s is

terminated by the <esc> character.

#J MOVE LINES. The HERE POINTER ('.') MOVE LINES
sets another pointer into the edit
buffer. Lines can be moved from the
HERE pointer to the current buffer
pointer by the MOVE LINES command. #
indicates how many lines are to be

moved.

#K KILL LINES. # 1lines, delimited by a KILL LINES
(CR>, are deleted from the edit buffer.
The buffer pointer is the point of

transaction.

#L LINE MOVE. The buffer pointer is moved LINE MOVE
lines forward or backward from its

current position. A zero

(or no

perameter) move is to the beginning of

the current line.

#M CHARACTER MOVE. The buffer pointer is CHARACTER MOVE
moved # characters forward or backwerd

from its current position.

N NEW BUFFER. Hhen this

command is NEW BUFFER

verified, the edit buffer is cleared.

P PUNCH BUFFER. The entire edit buffer PUNCH BUFFER
is Wwritten to the output file and a form
feed <“L> is appended to the end.

8P PUNCH # LINES. # 1lines, beginning at PUNCH # LINES
the pointer, are wnritten to the output
file. A form feed <*L> is eppended to

the end.

PH PUNCH WITHOUT <~L>. The entire edit PUNCH WITHOUT <~L>
buffer is written to the output file.

#PH PUNCH # LINES WITHOUT <~L>.

lines, PUNCH # LINES RITHOUT <~L>

beginning at the pointer, are written to

the output file.

——havanin

PDOS 2.4 DOCUMENTATION

CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-15

(11.1.3 EDIT - CHARACTER EDITOR continued)

S<s» SEARCH FOR STRING. A search for string SEARCH FOR STRING
<s) is made in the edit buffer beginning
at the pointer. If ¢8> 1is found, the
pointer is placed at the beginning of
the string. If <s> is not found, the

pointer is left untouched.

T TYPE ENTIRE BUFFER. The entire buffer TYPE ENTIRE BUFFER
is output to the user console. A “C

Wil stop the printing.

#7 TYPE # LINES. # 1lines of edit text, TYPE # LINES
beginning at the pointer, are printed to
the user console. If # is negative,
then the pointer is moved back # 1ines

and # lines are printed.

X EXECUTE MACRO. The edit macro, if EXECUTE MACRO
defined, 1is executed # times. If no
number 1is given, the macro Rill be

executed only once. A breaks
execution.

XM<s) DEFINE MACRO. An edit macro is defined DEFINE MACRO
by the string <s>. No execution takes
place.

XM DELETE MACRO. The edit macro is DELETE MACRO
deleted.

Y YANK NEH PAGE. The edit buffer is YANK NEW PAGE

cleared and a neW page of characters is
read from the input file. This read is

delimited by a form feed <~L> or
end-of-file.
Y4 MOVE TO END OF TEXT. The pointer is MOVE TO END OF TEXT

moved to the end of the edit buffer.

. HERE POINTER. A pointer is set for the HERE POINTER
MOVE LINES command. The current line
number 1is also printed to the user

console.

OF LINES. The number of lines in the # OF LINES

user edit buffer is printed to the user

console.

= # OF CHARACTERS. The

number of # OF CHARACTERS

characters in the user edit buffer is

printed to the user console.

PDOS 2.4 DOCUMENTATION

CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-16

(11.1.3 EDIT - CHARACTER EDITOR continued)

+

OF CHARACTERS LEFT. The number of
characters available in the edit buffer
is printed to the user console.

A sample edit session is given belon:

.EDIT
EDIT R2.4

I THIS IS A TEXT FILE
x

START __XPMC ;OUTPUT MESSAGE
* DATA MESO1
XEXT

3

MESO1 _ BYTE >0A,>00
TEXT ‘OUTPUT MESSAGE'

BYTE 0
END_START
$s
*Is$
* THIS IS A TEXT FILE
L 3
START XPMC ;OUTPUT MESSAGE
DATA MESO1
XEXT

MESO1 BYTE >0A,>0D
TEXT 'OUTPUT MESSAGE'

BYTE 0
END START
*Bgs
*1T$s

* THIS 1S A TEXT FILE

*SOUTPUTSL$1T$$
START XPMC ,OUTPUT MESSAGE

*C'OUTPUTS ' PRINTED$L $1T$$
TEXT ‘PRINTED MESSAGE'

*GOTEMP$$
*P$GOSS
*He$

OF CHARACTERS LEFT

SSRSEESSII=RIR=z=zzIz=sIC

CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-17

PDOS 2.4 DOCUMENTATION

i

11.2 ASM - PDOS 9900 ASSEMBLER

ASM is a TMS 9900 assembler designed to be used wWith the
PDOS operating system. ASM accepts TMS 9900 and 9995
assembly mnemonics and directives, and outputs 9800 tag
object code. It cen be run in foreground mode With the user
inputting optional files from the keyboard, or in background
mode as an offline task while other processes such as
editing are run in the foreground.

Input and output options are specified by a 1list of file
names following the ASM command or from keyboard prompts.
These options are, in order:

<SOURCE» Assembly source file (required)
<OBJECT» T1 Object output file

<LIST> Assembly listing file
<ERROR> Assembly error file (default to conscle)
<XREF> Symbol cross reference file

11.2.1 USING THE ASSEMBLER

To invoke the assembler from the keyboard, simply insert a
disk wWith an ASM file on it and type ASM. 1f there are any
disk errors encountered, such as ‘file not defined', then
ASH will report 'PDOS El = ', followed by the PDOS error
#, and then return to PDOS. Since some programs create LIST
or XREF files too large for the disk space available, these
files can be specified as drivers for printers or terminals.

The SOURCE file consists of TIS900 assembler directives and
mnemonics as described in the TI9900 assembler manual. If
there is no IDT directive, no IDT wWill be output. The
SOURCE file must end with either a LINK or END directive.
The LINK command opens the file specified in the operand
field and continues assembling as if it wWere appended to the
SOURCE file. The final file must end with an END directive,
which causes the assembler to reopen the original SOURCE
file and begin the second pass. The argument of the END
directive is an expression whose value is output to the
OBJECT file with an entry tag.

.ASM TEST:SR,TEST,LIST, ,XREF
ASM R2.4
SOURCE=TEST:SR
0BJ=TEST
LIST=LIST

ERR=

XREF=XREF

END OF PASS 1
0 DIAGNOSTICS
END OF PASS 2
0 DIAGNOSTICS

.ASM

ASM R2.4

SOURCE=_

ASM DEMO:SR,DEMO,$TTA, ,$TT0

SOURCE FILE

BEGIN MOV RO,RO
LINK PROG2

END BEGIN

PDOS 2.4 DOCUMENTATION R CHAPTER 11 EDIT-ASM-LINK-XBUG . PAGE 11-18

(11.2.1 USING THE ASSEMBLER continued)

719900 tag object code is output to the file selected by OBJECT FILE
the '0BJ=' prompt. The OBJECT code is output on the second

pass as a string of ASCII characters. The format is defined

by the TI19900 assembly manual.

ASM and PDOS supports byte addresses. PDOS loads two bytes
at 8 time on byte boundaries. Checksums are optional in the
OBJECT file. A1l records are terminated with the 'F' tag.

The assembly symbol table can be optionally dumped to the
OBJECT file by selecting the 'S=1' option of the 'OPT'
directive. These values could be used by a symbolic
debugger at a later time.

The OBJECT file is closed by the assembler wWith an 0B
attribute. If no linking is required, PDOS can execute the
file directly.

A listing of the source code, along wWith the assembled LIST FILE
object code values, is generated when & file name is entered

for the LIST option. The LIST file is a paged wWith the

assembler name and revision at the top. The page number,

date, SOURCE file name, and disk name are on the next line.

A source line is preceded by a two digit line number, the

hexadecimal address, and up to three hexadecimal object code : ’ :
values. The assembler automatically pages every 56 lines or : R
when the 'PAGE' directive is encountered.

Following the source listing, an alphabetized 1list of the
symbols defined during assembly, along With the symbol type
and value, is output to ' ‘the LIST file. Possible symbol

types are:
A = absolute
R = program-relocatable
D = data-relocatable B : Y
U = undefined o
M = multiply-defined
E = REF symbol

The symbol table can be optionally replaced wWith a symbol
cross reference by selecting the 'X=1' option of the 'OPT'
directive.

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-19

(11.2.1 USING THE ASSEMBLER continued)

The assembler reports any assembly errors by printing the ERROR FILE
line from the 1listing to the ERROR file, with en error

letter in column 3. Only the first error on each 1line is 16X0006: CO00 MOV RO,
reported by a letter, but the "total errors" message counts 22A0018: 1000 JMP $+>220

all errors found by the assembler. If no error file is
specified, errors are printed to the console. The current
errors are defined as:

‘B' = Byte overflon

‘C' = INegal ASCII constant

Text delimiter error

'E' = I1legal number

‘F' = File error

'M' = Multiply defined symbol
Numeric overflow

‘0" = Field overflon

‘R' = CRU displacement out of ran
‘S* = Illegal symbol -
‘T' = Symbol table overflow

‘U’ = Undefined symbol

Missing operand

= Expression mode error

‘t' = Floating point conversion error

o
"

z
"

=<
n

m' = Multiply-defined symbol referenced
't* = Truncation error
A cross reference is output to the specified XREF option XREF FILE

file in a paged form, similar to the LIST file. Each symbol

is listed with its type and value followed by the page and

line # of each reference in the source. The reference at c A 000D 1/11* 1/28

which the symbol is defined is marked with an asterisk (*). D M 00A9 1/4% 1/9% 1/29
The workspace registers RO through R15 are also included in

the cross reference. The cross reference is done during the

second pass, eliminating the need for a third pass. The

XREF listing is paging is consecutive With that of the LIST

file.

It is possible to direct the cross reference of the file
directly to the LIST file, by setting the X option flag
nonzero With the OPT directive. This eliminates the need to
append the XREF file to the LIST file for printing.

PDOS- 24 DOCUMENTATION

CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-20

11.2.2 ASSEMBLY LANGUAGE FORMAT

Assembly language source statements consist of the
folloning four fields: :

LABEL MNEMONIC OPERANDS COMMENT

The source line must be less than 108 characters long, and
at least one blank or TAB must be inserted between fields.

LABEL FIELD

The label is a symbol consisting one to six characters,
beginning with an alphabetic character in position one of
the source line. The label field is terminated wWith at
least one blank or TAB character. If a label is not used,
character position one must be a blank or tab character.

MNEMONIC OR OPCODE FIELD

This field contains the mnemonic code of 1) a 9900
instruction, 2) an assembler directive, 3) a symbol
representing one of the program defined XOPs, or 4) a
special code invoking @ PDOS command primitive. Usually
this field is positioned in the second tab field, beginning
eight characters from the ieft. All of the four character
PDOS command primitives are legal opcodes.

OPERAND FIELDS

The operands specify the memory locations or immediate data
to be wused by the instruction. Constants, symbols,
literals, and expressions are legal operands.

COMMENT FIELD

Comments follow the operand field. Usually the comment
field is positioned in the fourth tab field, beginning 24
characters from the left. The use of a semicolon as the
first character in the comment field helps to set off
comments for clarity. If the first character of a source
line is an asterisk (*), then the entire line is a comment.

LABEL

START

A R1,R2

XGNP

JNE ERR

;ADD

JGET PARAMETER
JNONE

ﬁ

L

PDOS 2.4 DﬁCUHENTATION , CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-21

11.2.3 CONSTANTS

Constants can be signed decimal, hexadecimal, or binary
integers, ASCII constants, or 6-byte floating point numbers.

Decimal integers are written as a string of numerals in the
range of -32768 to +32767.

Hexadecimal constants consist of a string of hexadecimal
digits preceded by a right angle bracket and range from 0 to
YFFFF.

Binary constants consist of a string of 1's and O0's,
preceded by a percent sign (%4).

ASC11 cheracter constants are one or two characters
enclosed in single quotes. A single quote can be entered by
using tWo quotes ('‘).

Floating point constants use the 'CONS' directive and may

be any legal floating point number including scientific
notation using the 'E' operator.

1l.2.4 SYMBOLS

Symbols begin with an alphabetic character and can be up to
six characters in length. There can be no embedded blanks.
Legal cheracters for positions 2 through 6 are A-Z, 0-9, .,
% and $. The assembler predefines the dollar sign ($) to
represent the current location counter, and the symbols RO
through R15 are used to represent the workspace registers.

A given symbol can be used as a label only once, and any
symbol in the OPERANDS field must have been used as a label
previously. Symbols defined with the OXOP directive are
used in the OPCODE field.

11.2.5 OPERATORS

The binary operators interpreted by ASM for expressions are
+, -, % /, &, !, and \. These operators perform 16-bit
addition, subtraction, signed multiplication, signed
division, logical AND, 1logical inclusive OR, and logical
shitt right, respectively. To shift an operand logically
left, use a negative shift count.

AL RS,20

ORI R3,>FF00

LI RO,%10110110

L1 RO, 'AB*
LI RO,'''B’

CONS 3.1415926,1E10

DATA LABEL1,LABELZ,A$,LO%

DATA A+B-C*D/E
DATA -1&-2!FLAG
BYTE ADDR&>OOFF*256

BYTE ADDR\8,ADDR\-8

P = - e aeaem—ee—aa=

PDOS 2.4 DOCUMENTATION ' CHAPTER 11 EDIT-ASM-LINK-XBUG

—— e e e e
——

PAGE 11-22

11.2.6 EXPRESSIONS

Expressions are made of up symbols and constants, which may LI RO,ASM42-ASM30/2+1300+100
be immediately preceded by a unary plus (+) or minus (-). MOVB 3-PEND(R5) ,3TABLE+INDEXO
Symbols and constants are separated by operators, and the

expression 1is evaluated from left to right with no operator

precedence. Only @absolute operands are used with

multiplication or division. The rule governing addition and

subtraction of relocatable operands is described in the TI

assembly manuel.

11.2.7 ASSEMBLER OBJECT TAGS

ASM outputs standard T1 9900 tag object and record formats,
with the following exceptions:

1) Any tag address can be on an odd byte
boundary.

2) External tags 3, 4, 5, and 6 aere
modified to be used with the PDOS single
pass linker.

3) Tags G and H have been added for DSEG

addresses and data.

4) Tags 7, 8, D, and E are not part of ASM
output.

The data type is' reflected in the 1listing by a single
character which follows the hex object 1list. These
character types and the assembler output tag definitions are
defined in Table 11.1.

A SYSTEM FILE (type=SY) is a modified form of 9900 tag Type = SY
object code. A one-third reduction in object code results

from: 1) eliminating all data superfluous to PDOS, including

redundant address codes, checksums, ¢line feeds>, and IDTs,

and 2) converting all necessary data from four ASCIIL

cheracters into two binary bytes. A SYSTEM FILE is Tags 2,A,B,C
generated from an object file by the SYFILE utility. Only

tags 2, A, B, and C are output in the system file.

The PDOS loader Will accept either 9900 tag object or a
system object file. Since system object files are smeller,

load time is proportionately faster.

(See 5.30 LOAD FILE and 12.23 SYFILE.)

(P\

PDOS 2.4 DOCUMENTATION

PAGE 11-23

TAG FIELD 1

T OMMOO D> O0ONOO & WN 0

PSEG length
Absolute entry
Relocatable entry
Symbol (6)
Absolute value
P-R value

D-R value
(Reserved)
(Reserved)
Absolute Address
P-R Address
Absolute Data
P-R Data
(Reserved)
(Reserved)

(not used)

D-R Address

D-R Data

Program 1D (8)
(not used)
(not used)
(not used)
Symbol (6)
Symbol (6)
Symbol (6)

(not used)
(not used)
(not used)
(not used)

(not used)
(not used)
(not used)

FUNCTION

107

END absolute
END relocatable
External REF
External DEF

P-R External DEF
D-R External DEF

AORG
RORG, PSEG
Absolute

Program-relocatable

End of record
RORG,DSEG
Data-relocatable

TABLE 1l1.1 ASSEMBLER OBJECT TAGS

LIST 1D

blank

= o 2 - e e e e e

PAGE 11-24

11.2.8 ASSEMBLER DIRECTIVES

The PDOS ASM assembler supports the following directives:

I0T <‘'name’> Program identifier

END <exp> End assembly, set entry

LINK <file> Link to file

EQU <exp> Define assembly-time constant

BYTE <exp1>{,<exp2>}... Initialize byte

DATA <expP(,<exp2>}... Initialize word

TEXT {-}{+}..¢'string'> Initialize text (any delimiter)
CONS <fp #>(,<fp #>}... Initialize 6 byte FP number

AORG <exp> Absolute origin

RORG {<exp>) Relocatable origin

DORG <exp> Dummy origin (no object)
PSEG Program segment

DSEG Data segment

BES <exp> Block ending with symbol
BSS <exp) Block starting With symbol
EVEN Set word boundary

PAGE Page eject

TITL <¢'string*> Page title

LIST List source

UNL No source list

DXOP <symbol»,<exp> Define extended operation

DEF <sym)>{,<(sym>}... External definition

REF <sym>{,<(sym>}... External reference

COPY <file Include from <file>

IFZ <exp>,(symbol> 1f <exp> zero, goto (symbol>
IFN <exp>,<symbol> 1f <(exp> nonzero, goto <symbol>
DUP <exp) : Duplicate next line <exp> times

OPT <char>=<exp>{,<char>=<exp>}...
Set option flag <char>
QFLG Assemble if ? nonzero
PFLG Assemble right or left half
CFLG Output tag 7 checksums With object
LFLG Expanded 1ist options
RFLG Register cross reference
SFLG Punch symbol table to object
XFLG Output XREF to LIST file

X 1 DM O %

POOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-25

11.2.8.1 REQUIRED DIRECTIVES

Each source program must contain an IDT, and END or LINK.
These directives control the flow of input to the assembler.

END - PROGRAM END

Syntax definition:

{¢1abel>} END {<exp?)} {<comment>}
The END directive terminates the assembly source file. Any BEGIN ...
source statements following the END directive are ignored by END BEGIN ,OUT ENTRY TAG
the assembler. When the label field is used, the current
value of the location counter is assigned to the symbol. MODUL ...
The operand field is optional. It specifies a END sNO ENTRY TAG

program-relocatable or absolute entry point to the program.

If the assembler finds an external reference or a
data-relocatable expression in the operand field, en
expression mode error (e) is printed, and no entry point is
output to the object file. The comment field may only be
used when the operand field is present.

An entry point in the OBJECT file consists of a '1' tag
folloned by an absolute entry address or a '2' tag followed
by a relocatable address. PDOS requires a relocatable entry
address to execute the file from the monitor. HKhen a
program is to be combined with other modules by the LINKer
utility, the entry address is optional.

NOTE: The source line containing the END directive MUST
have a carriage return <CR> at the end, or a PDOS error 56
Will be printed and the assembler Will abort at the end of
the first pass.

PDOS 2.4 DOCUMENTATION - CHAPTER 11 €DIT-ASM-LINK-XBUG

PAGE 11-26

(11.2.8.1 REQUIRED DIRECTIVES cantiﬁued)

IDT - PROGRAM IDENTIFIER

Syntax definition:
{<1abel>} IDT <‘'name’> {<comment>}

IDT assigns a name to @ program. An IDT directive must
precede any code that resuits in object code. HWhen the
label field is used, the current value in the Jlocation
counter 1is assigned to the 1label. The operation field
contains IDT. The operand field contains the program name
<‘name’')>, & character string of up to eight characters,
delimited by any character.

1f the IDT has no operand, the assembler outputs a missing
operand error (X) and ignores the line. When an operend of
more than eight characters is entered, the assembler prints
a truncation error.:(t) and outputs in the IDT field, the
first eight characters. If less than eight characters are
entered, the assembler fills the IDT field with blanks. If
no closing delimiter is encountered, the assembler prints a
delimiter error (D) and outputs the IDT.

The program neme is placed in the object code for wutilities
such as ALOAD and LINKer, but serves no purpose during the
assembly. The assembler outputs to the OBJECT file a 'O’
tag, followed by 4 hexadecimal digits representing the PSEG
length, and the 8 character 1DT string.

LINK - LINK TO FILE

Syntax definition:
{<1abel>) LINK ¢file {<comment>}

The LINK directive closes the current source file, opens
the file specified by the operand, and continues the
assembly process. The last statement of a source file must
be either the END or LINK directive. Any source statements
folloning a LINK directive are ignored and the assembler
begins reading source statements from the specified <file>.

Khen the 1sbel field is used, the current value of the
location counter is assigned to the symbol. The operation
field contains LINK. The operand field contains the name of
a PDOS file, from which the assembler reads subsequent
source statements. The comment field is optional.

ASM

IDT 'PRGM1’
107 $PRGMR2 . 0$

FILE ASM1:SR

LINK ASM2:SR

FILE ASM2:SR

LINK ASM3:SR

FILE ASM3:SR

END ASM

-

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-27

11.2.8.2 CONSTANT INITIALIZATION DIRECTIVES

The follonwing directives are used to initialize constants,
labels, data, and text in source programs. They are EQU,
BYTE, DATA, CONS, and TEXT.

EQU — DEFINE CONSTANT

Syntax definition:

<label> EQU <exp> {<comment>)}
The EQU directive assigns a value to a symbol. The 1label FLAG
field contains the symbol and the operand field contains the REGO
value. Use of the comment field 1is optional. The value EMUL

must be consistent for each pass of the assembler.

BYTE - INITIALIZE BYTE

Syntax definition:

{<1abel>) BYTE <exp?1>{,<exp2>}... {<comment>)

The BYTE directive defines values for one or more
successive bytes of memory. When the label field is used,
the location at which the assembler places the first byte is
assigned to the label.

The operand field contains one or more expressions
separated by commas. There can be no embedded blanks nor
external references. The assembler evaluates each
expression and places the value at the current memory
location as an 8-bit two's complement number. The memory
address is incremented by one. Mkhen truncation is required,
the assembler prints a byte overflow error (B) and places
the rightmost portion of the value in the byte. The comment
field is optional.

EQU 1
EQU ‘RO’
EQU FLAG&1*256

BYTE >07,>0A,>00,0
BYTE ‘A','B',0

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-28

(11.2.8.2 CONSTANT INITIALIZATION DIRECTIVES continued)

DATA - INITIALIZE WORD

Syntax definition:
{<1abel>)} DATA <exp1>{,<exp2>}... {<comment>}

The DATA directive defines values for one or more DATA 0,1,2,'AB’, ‘%' %256
successive words of memory. The assembler first advances

the location counter to a word (even) boundary. When the

label field is used, the location at which the assembler

places the first word is assigned to the label.

The operand field contains one or more expressions
separated by commas. There can be no embedded blanks, but
external references are allowed if no arithmetic is
performed on them. The assembler evaluates each expression
and places the value in a wWord as a sixteen-bit two's
complement number. The memory addresses is incremented by
two. Hhen truncation is required, the assembler prints a
numeric overflow error (N) and places the rightmost portion
of the value in the Word. The comment field is optional.

CONS - INITIALIZE 6 BYTE FLOATING POINT NUMBER

Syntax definition:
{<1abel} CONS <fp ﬂ){,(fp #))... {<comment>}

The CONS directive defines floating point values for one or CONS 3.1458,1.234E-10, .0000001
more successive 6-byte memory locations. The assembler : :

first advances the location counter to a word (even)

boundary. HWhen the 1label field is used, the location at

which the assembler places the first word is assigned to the

label.

The operand field contains one or more floating point
expressions separated by commas. There can be no embedded
blanks. The assembler converts each floating point number
into the stenderd PDOS 6-byte IBM excess 64 format and
places the value in three consecutive wWords. The memory
address is incremented by six. HWhen a conversion error
occurs, the assembler prints a floating point conversion
error (f) and places zeros in the three words. The comment
field is optional.

PDOS 2.4 DOCUMENTATION , CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-29

(11.2.8.2 CONSTANT INITIALIZATION DIRECTIVES continued)

TEXT ~ INITIALIZE TEXT

Syntax definition:
{<1abel>) TEXT {=}{+}..<¢'string'> {<comment>}

The TEXT directive places one or more characters in
successive bytes of memory. The assembler can optionally
negate the last character of the string or append a null
byte to the end of the string. When the label field is
used, the location at which the assembler places the first
character is assigned to the label.

The operand field contains a string delimited by any
printable character except a blank, minus, or plus sign. If
the comment field is not used, the closing delimiter is
optional. If a blank or control character is used as a
delimiter, the assembler Will print a text delimiter error
(D) and the line Will be ignored.

Each minus sign preceding the string decrements a counter,
which is initialized to zero. Each plus sign preceding the
string increments the same counter. The sign of the
resulting counter determines how to process the string. If
the resultant counter equals zero, no action is taken. If
the counter is negative (more minus signs than plus signs),
then the last byte of the string is negated. If the counter
is positive (more plus signs than minus signs), then an
extra null byte is output after the end of the string. This
has the same effect as if the TEXT statement line were
followed by a BYTE O directive.

NOTE: The length of the string must not be so large that
the entire source line exceeds 108 characters. No error
message Will be output if the assembler truncates a source
line upon input.

MES1

MES2

MES3

TEXT °‘START PROCESS®
BYTE >0A,>00,0

TEXT - $NEGATE TH' LAST BYTE$

TEXT +"TERMINATE WITH NULL BYTE"

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM~LINK-XBUG PAGE 11-30

11.2.8.3 LOCATION COUNTER DIRECTIVES

The following directives are used to alter the location
counter during assembly, and to perform all necessary mode
control, segment definition, and block assignment. They are
AORG, RORG, DORG, PSEG, DSEG, BES, BSS, and EVEN.

The directives AORG and RORG control the origin modes for
code generation. Directives PSEG and DSEG select program
relocatable and data relocatsble location counters. The
directive DORG disables object output.

These directives allon you to develop applications for RAM
and EPROM systems usiﬁg' the same source files. This is
accomplished by specifying in the source a program segment
(for EPROM) and @ data segment (for RAM). The LINKer
utility then adjusts the tagged object for PDOS or for
burning into EPROM for application testing.

The complete interaction of these directives as implemented

in the assembler is defined in Table 11.2 which follows -
DSEG.

AORG - ABSOLUTE ORIGIN

Syntax definition:
{<1abel?) ACRG <exp> {<comment>}

The AORG directive places a value in the location counter AORG >100
end defines the succeeding locations as absolute. Object

output is enabled. When the label field is used, it is

assigned the value that the directive places in the location

counter.

The operand field contains a well defined, absolute
expression. If the expression is not absolute, the
assembler prints an expression mode error (e) and the 1line
is ignored. Use of the comment field is optional.

A~

{

)

PDOS 2.4 DOCUMENTATION

CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-31

(11.2.8.3 LOCATION COUNTER DIRECTIVES continued)

RORG — RELOCATABLE ORIGIN

Syntax definition:
{¢<label’} RORG {<exp>) {¢comment>}

The RORG directive places a value in the location counter.
1f - encountered in absolute code, it also defines succeeding
locations as program relocatable. The RORG directive
enables output to the object file. HWhen the label field is
used, it is assigned the value that the directive places in
the Jlocation counter. The operand field is optional. The
comment field may be used only when the operand field is
used.

If the RORG directive appears in absolute or program
relocatable code and the operand field is not used, the
location counter is set to the current length of the program
segment (PLEN) and the mode of the data that follows is
program relocatable (P-REL).

If the RORG directive appears in data relocatable code
Without an operand, the 1location counter is set to the
length of the data segment (DLEN) and the mode of the data
that follows remains data relocateble (D-REL). HWhen the
operand field is used, the operand must be an absolute,
progrem relocatable, or data relocatable expression. The
expression can contains only previously defined symbols.

If the RORG directive is encountered in absolute code, a
relocatable operand must be program relocatable (P-REL). If
the RORG directive is encountered in relocatable code, the
relocation type must match that of the current location
counter. OtherWise, the assembler prints an expression mode
error (e) and the line is ignored.

When the RORG directive appears in absolute code, it
changes the location counter mode to program relocatable
(P-REL) end replaces its value With the operand value. In
relocatable code, the operand value replaces the current
location counter value, and the mode of the location counter
remains unchanged.

Please verify With Table 10.2.

RORG $

RORG $+>200

PDOS 2.4 DOCUMENTATION

CHAPTER 11 EDIT-ASM~LINK-XBUG

PAGE 11-32

DIRECTIVE CURRENT LOCATION COUNTER MODE
{ AORG DUMMY P-REL DUMMY D-REL DUMMY
H AORG P-REL D-REL
AORG <exp? { [addr = <exp>]
{ [mode = ABS]
<exp) must | [reset DUMMY]
be absolute | [PLEN = oldadr]*
' [DLEN = oldadr}*
DORG ¢exp> ! [addr = <exp) ’]
{ [mode = mode<exp> :]
{ [set DUMMY)]
! [PLEN = oldadr]*
! [DLEN = oldadr]*
RORG no exp} [addr = PLEN] (no change) (no change)
{ [mode = P-REL] (no change) (no change)
t [reset DUMMY]
ABS <exp>} [addr = <exp>)]
{ [reset DUMMY]
| [mode = P-REL ~—~=-——==-e——m >}[mode = D-REL]
H [PLEN = oldadr]*
H [OLEN = oldadr]*
P-REL <exp>} [addr = <(exp) ----———-——-——v »] [cerror >]
! [reset DUMMY ---———---————-- Y]
{ [mode = P-REL ~~-----—===——- >]
H [PLEN = oldadr]*
D-REL <exp>} [<error >] [<error >] [addr = <exp’]
H [reset DUMMY]
H [mode = D-REL]
H [DLEN = oldadr]*
PSEG { [addr = PLEN]
{ [mode = P-REL]
{ [reset DUMMY]
H [DLEN = oldadr]*
DSEG ! [addr = DLEN ’]
{ [mode = D-REL]
{ [reset DUMMY]
[]
1

[RLEN = oldadr]*

TABLE 11.2 LOCATION COUNTER DIRECTIVES

e m- e. m- m- m- w- W . —- - we - m—- = - - -

Notes:

P-REL means Program-Relocatable Mode
D-REL means Data-Relocatable Mode
ABS means Absolute Mode
[RLEN = oldadr]* means

RLEN = maximum (RLEN,oldadr)
[OLEN = oldadr]* means

DLEN = maximum (DLEN,oldadr)
DUMMY = SET inhibits object output
1f an error occurs, ASM ignores line.

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASH-LINK-XBUG PAGE 11-33

Eﬂ-\

(11.2.8.3 LOCATION COUNTER DIRECTIVES continued)

DORG - DUMMY ORIGIN

Syntax definition:

{<1abel>} DORG <exp> {<comment>}
The DORG directive places a value in the 1location counter RORG $
end defines the succeeding locations as a dummy block. The .
assembler does not generate object code in dummy mode, but DORG ¢ sTURN OFF OBJECT
operates normally in all other respects. When the label .
field is used, the label is assigned the value that the RORG ¢ ;TURN ON OBJECT
directive places in the location counter. -

The operand field contains either an absolute or
relocatable expression. Any symbol in the expression must
be previously defined. If not, the assembler prints an
expression mode error (e) and the line is ignored. The
value of the expression replaces the location counter and
the mode of the expression becomes the mode of succeeding
locations.

5ﬂ-‘\ Any of the following directives reset the dummy flag and
enable output to the object code file: AORG, RORG, PSEG, and
DSEG. An example of the use of the DORG directive is
alternating a 'RORG $¢' command wWith a 'DORG $' command.
This nould cause the assembler to assign successive
locations to the source code, but turn on and off the output
to the object file.

PSEG — PROGRAM SEGMENT

Syntax definition:

{<1abel>} PSEG {<comment>}
The PSEG directive places a value in the location counter RORG O
and defines succeeding locations as program relocatable. cee
When a label is used, it is assigned the value that the DSEG
directive places in the location counter. The operand field .
is not used and the comment field is optional. PSEG

The location counter is loaded with the program relocatable
segment length, PLEN. The assembler sets PLEN to zero at
fg" the beginning of each pass, and updates it to the next
) available location whenever the program relative mode
(P-REL) is exited.

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-34

e S=SIs===

N

(11.2.8.3 LOCATION COUNTER DIRECTIVES continued)

The assembler begins each assembly in program relocatable
mode. P-REL mode is terminated with any of the following
directives:

AORG
DORG where mode of <exp> is not P-REL
DSEG

PLEN is updated to the maximum value previously attained by
the location counter as a result of the assembly of any
preceding block of progrem-relocetable code. The governing
equation for PLEN when exiting the P-REL mode is:

PLEN = maximum (PLEN,oldaddr).

DSEG - DATA SEGMENT

Syntax definition:
{<1abel>} DSEG {<comment>} - _)

The DSEG directive places a value in the location counter
and defines succeeding locations as data relocatable. HKhen
8 label is used, it is assigned the value that the directive
places in the location counter. The operend field is not
used and the comment field is optional.

The location counter is loaded with the data relocatable
segment length, DLEN. The assembler sets DLEN to zero at
the beginning of each pass, &and updates it to the next
available location whenever the data relocatable mode
(D-REL) is exited. The assembler begins each assembly in
program relocatable mode, and the only wWay to enter data
relocatable mode is through the DSEG directive. D-REL mode
is terminated with any of the following directives:

AORG
DORG where mode of <exp> is not D-REL
PSEG

DLEN is updated to the maximum value previously attained by
the 1location counter as a result of the assembly of any
preceding block of data relocatable code. The governing
equation for OLEN when exiting the D-REL mode is:

DLEN = meximum (DLEN,oldaddr).

————— o o e o e o o

POOS 2.4 DOCUMENTATION . CHAPTER 11 EDIT-ASH-LINK-XBUG

SEEEEITESEISSIsI=sSsIsos

PAGE 11-35

(11.2.8.3 LOCATION COUNTER DIRECTIVES continued)

BES - BLOCK ENDING WITH SYMBOL

Syntax definition:
{<label>} BES <exp? {<comment>)

The BES directive advances the location counter according
to the value in the operand field. The label field symbol
is assigned the new location counter value.

The operand field contains a well defined, absolute
expression that represents the number of bytes to be added
to the location counter. Otherwise, the assembler prints an
expression mode error (e) and the line is ignored. The
comment field is optional. Note that the symbol is assigned
the value of the location FOLLOWING the block.

BSS - BLOCK STARTING WITH SYMBOL

Syntax definition:
{<1abel») BSS <exp» {<comment>}

The BSS directive advances the location counter according
to the value in the operand field. The label field symbol
is assigned the old location counter value before it is

updated.

The operand field contains a well defined, absolute
expression that represents the number of bytes to be added
to the location counter. Othernise, the assembler prints an
expression mode error (e) and the line is ignored. The
comment field is optional. Note that the symbol is assigned
the value of the location at the BEGINNING of the block.

BEND BES 20

BUFFER BSS >100
DATA O

JGET BUFFER

PDOS 2.4 DOCUMENTATION - CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-36

(11.2.8.3 LOCATION COUNTER DIRECTIVES continued)

EVEN — WORD BOUNDARY

Syntax definition:
{<1abel>) EVEN {<comment>}

The EVEN directive moves the location counter to the next
word boundary (even byte) address. 1f the location counter
is already on a word boundary, the line is ignored.

The label field symbol 1is assigned the location counter
value before any adjustments are made. The operand field is
not used and the comment field is optional.

Use of an EVEN directive preceding or following a machine
instruction or a DATA directive is redundant since the
assembler advances the location counter to a word address
for those instructions

MES1

TEXT -'MESSAGE'

EVEN

TEXT °HELP’ ;ON EVEN BOUNDARY
BYTE O

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG

" PAGE 11-37

11.2.8.4 OUTPUT CONTROL DIRECTIVES

The following directives control the output of the
assembler by forcing page throws, turning on and off the
listing, and defining extended operation codes. They are
PAGE, TITL, LIST, UNL, and DXOP.

PAGE - EJECT PAGE

Syntax definition:
{<1abel>} PAGE {<comment>}

The PAGE directive causes the assembler to continue the
source program listing on a nen page. The PAGE directive is
usually not printed in the source 1listing, but the 1line
counter is incremented. However, when a label is used, the
current value of the location counter is assigned to the
label and the 1line is printed to the source listing file.
The operand field is not used and use of the comment field
is optional.

The assembler automatically pages the source 1listing after
56 lines are output to the source listing file.

TITL — PAGE TITLE

Syntax definition:
{<1abel>} TITL <'string'> {<comment>}

The TITL directive supplies a title to be printed in the
heading of each page of the source listing. This directive
is not printed in the source listing unless the label field
is used or there is an error. However, the line counter is
incremented.

When a label is used, the current value of the 1location
counter 1is assigned to the 1label. The operand field
contains a character string of up to 50 characters delimited
by any character. HKhen more than 50 characters are entered
between delimiters, the assembler retains only the first 50
characters as the title and prints a truncation error (t).
The comment field is optional.

The title is printed on all pages following the TITL
directive until another TITL directive is processed. If the
TITL directive is the first line of a source program, the
title appears at the head of the first page of the listing.

SuB1

suB2

,SUBROUTINE #1
PAGE
JSUBROUTINE #2

TITL 'DEBUG PROGRAM, REV 1.0°

PDOS 2.4 DOCUMENTATION- CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-38

==z== ==zs

(11.2.8.4 OUTPUT CONTROL DIRECTIVES continued)

LIST - LIST SOURCE

Syntax definition:
{<label>} LIST {<comment>}

The LIST directive restores printing of the source to the
LIST file if it has been disabled by the UNL directive.
This directive is not printed in the source listing unless
the 1label field is used, but the line counter is
incremented.

When a label is used, the current value of the location

counter is assigned to the label. The operand field is not
used and use of the comment field is optional.

UNL - NO SOURCE LIST

Syntax definition:
{<label>} UNL {<comment>}

The UNL directive disables the output of the source 1listing
to the LIST file. This directive is not printed in the
source listing unless a label is used, but the line counter
is incremented.

When a label is used, the current value of the location
counter is assigned to the label. The operend field is not
used and use of the comment field is optional.

Use of the UNL directive to inhibit printing reduces both
assembly time and the size of the source listing.

fﬂ'“

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-39

(11.2.8.4 OUTPUT CONTROL DIRECTIVES continued)

DXOP - DEFINE EXTENDED OPERATION

Syntax definition:
{<1abel>} DXOP <symbol), <exp> {<comment>}

The DXOP directive associates a symbol wWith an extended
operation instruction (XOP). Hkhen the label field is used,
the current value in the location counter is assigned to the
label.

The operand field contains a symbol followed by @ comma and
an expression ranging from 0 to 15. The comment field is
optional.

The assembler assigns the symbol to an extended operation
specified by the expression. When the symbol appears in the
operation field of a line, the assembler inserts the defined
XOP as the opcode for that line. However, the assembler
maintains only one symbol for each XOP at any one time. If
there is no comma in the operand field, the assembler prints
8 missing operand error (X) and the line is ignored.

NOTE: A symbol assigned to an extended operation MAY also
be used as a reguler label, and the assembler keeps their
meanings distinct.

DXOP 0UT,13

OUT aLABEL (R2)

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-40

11.2.9.5 LINKAGE DIRECTIVES

The follouin§ directives are used to provide linkage
information for the LINKer and include optional files in the
source stream. They are DEF, REF, and COPY.

DEF — EXTERNAL DEFINITION

Syntax definition:
{<1label?} DEF <symbol>{,¢(symbol>}... {<comment>}

The DEF directive outputs to the object file one or more

symbols and entry addresses for reference by to other LBL1
programs. hkhen the label field is used, the current value LBL2
of the location counter is assigned to the label. -LBL3. -

The operand field contains one or more symbols, separated
by commas. These symbols must be well defined on the first
pass of assembler. Otherwise, the assembler prints an
illegal symbol error (S) and the symbol is not output to the
object file. The use of the comment field is optional.

The DEF directive causes the assembler to output to the
object file a tag character indicating the mode of the
symbol, a four cheracter hexadecimal value, and the six
character name of the symbol. This information is used by
the LINKer utility in combining program modules which are
assembled separately.

REF - EXTERNAL REFERENCE

Syntax definition:
{<1abel») REF <symbol){,<symbol>}... {<comment)}

The REF directive outputs to the object file one or more
symbols to be resolved by the LINKer utility. When the
label field is used, the current value of the location
counter is assigned to the label.

The operand field contains one or more symbols, separated
by commas. The comment field is optional.

No arithmetic can be performed on a REF'd symbol. The
value appearing 1in the source listing when an externally
referenced symbol occurs is the address of the symbol in the
symbol table, end is not -the value output to the object
file.

DEF LBL1,LBLZ,LBL3
MOV R1,R2

EQU ¢

MOV R4,R5

REF LBL1,LBL2,LBL3
DATA LBL1,LBL2
MOV a&LBL3,RO

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-41

(11.2.9.5 LINKAGE DIRECTIVES continued)

The assembler outputs to the object file a '3' tag
character followed by the six characters of the neme of the
symbol. This information is used by the LINKer utility in
combining program modules which are assembled separately.

COPY — INCLUDE FROM FILE

Syntax definition:

{<1abel>) COPY <file> {<comment>}

The COPY directive temporarily sWwitches from the source START

file to a new file for text inputs. The operand field
contains a PDOS file name from which subsequent source
statements are to be read. HWhen the label field is used,
the current value in the location counter is assigned to the
label. The comment field is optional.

The COPY directive leaves the current source file open,
opens the COPY <file>, and reads source code from the COPY
file until finished. If the file is not found, the
assembler prints a copy file error (C) and the source input

file remains unchanged.

A COPY file terminates with either an end-of-file, a LINK
directive, or an END directive. If an end-of-file is
encountered in a COPY file, the assembler closes the COPY
file and resumes reading source code from the original
source file beginning With the 1line immediately following
the COPY directive.

If a LINK directive is encountered in a COPY file, the
assembler closes the COPY file and processes the LINK
command as usual. The new file becomes the COPY file.

1f an END directive is encountered in a COPY file, the
assembler processes the end directive as usual. Both the
COPY file as well as the original file where the COPY
directive wWas processed are closed and the assembly process
is terminated.

If the COPY directive is encountered in a COPY file, the
assembler prints a file error message and the line is
ignored; that is, COPY file cannot be nested.

COPY ASM2:SR
COPY ASM3:SR
COPY ASM4:SR
END START

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG

o e e oo o e

PAGE 11-42

11.2.8.6 CONDITIONAL ASSEMBLY DIRECTIVES

The following directives are used in conditional assembly
of source files. This allons various configurations of a
program to be assembled from the same sources by changing
only a fen flags. They are IFZ, IFN, DUP, and OPT.

IFZ - IF ZERO, GOTO SYMBOL

Syntax definition:
{<1abel») IFZ <exp>,<symbol> {<comment>}

The IFZ directive causes the assembler to skip source
statements if the expression equals zero. When the label
field is used, the current value of the location counter is
assigned to the label.

The operand field contains a Hell defined expression and a
symbol, separated by a comma. When the expression evaluates
to zero, subsequent source statements are treated as
comments until a source line is read which contains (symbol)
in its label field. Assembly then resumes normally
beginning wWith the 1line containing <symbol). khen the
expression evaluates to a nonzero value, the assembler
ignores the directive and assembly continues normally With
the next source statement.

If the expression is not absolute, the assembler prints an -
expression mode error (e), and the line is ignored. If
there is no comma, or if the expression is not well defined,
the assembler prints an illegal symbol error (S), and the
line is ignored.

IFN - IF NONZERO, GOTO SYMBOL

Syntax definition:

{<1abel>} IFN <exp>,¢symbol> {<comment>}
The IFN directive causes the assembler to skip source EMUL
statements if the expression is nonzero. HWhen the label
field is used, the current value of the location counter is *
assigned to the label. LAB1
»
LAB2

EQU 1 ,SET EMULATOR FLAG
RORG 0

L1 RO,>F0O00 ,COMMON CODE
IFN EMUL,LAB2 ;EMULATOR VERSION?
BL asuB1 ;N, DO REAL CALL

cee ;CONTINUE COMMON

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-43

\ (11.2.8.6 CONDITIONAL ASSEMBLY DIRECTIVES continued)

The operand field contains a well defined expression and a
symbol, separated by a comma. When the expression evaluates
to a nonzero value, subsequent source statements are treated
as comments until a source line is read which contains
(symbol> in its label field. Assembly then resumes normally
beginning with the 1ine containing <symbol>. HKhen the
expression evaluates to zero, the assembler ignores the
directive and assembly continues normally wWith the next
source statement.

If the expression is not absolute, the assembler prints an
expression mode error (e), and the line is ignored. If
there is no comma, or if the expression is not well defined,
the assembler prints an illegal symbol error (S), and the
line is ignored.

DUP - DUPLICATE LINE

Syntax definition:

-

{<1abel»} DUP <exp> {<comment>}
The DUP directive causes the assembler to duplicate the BS1Z EQU 7 ,SET BUFFER SIZE
next line. MWhen the label field is used, the current value *
of the location counter is assigned to the label. BUFFER DUP BSI1Z ,ZERO BUFFER
DATA O
The operand field.contains a well defined expression which e

contains the duplication count. The range of the count is
from O to 32767. I1f the expression equals zero, the next
line read from the source file is treated as a comment. If
the expression is nonzero, the assembler processes the next
line read from the source file, ¢(exp> number of times.

1f the line to be duplicated modifies the location counter,
then the 1label field on the line must not be used, or the
assembler issues a multiply-defined symbol error (M) each
time the line is assembled. Use of the comment field is
optional.

The DUP directive is useful when the size of a buffer in a
program needs to be varied each time the program is
assembled. For this example, an assembly time constant is
placed 1in the operand field and a DATA 0 directive
immediately follows the DUP directive.

I1f the expression is not absolute, the assembler prints an
expression mode error (e), and the line is ignored. If the
expression is not well-defined, the assembler prints an
illegal symbol error (S), and the line is ignored.

SI2N=

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-44
==lR=

(11.2.8.6 CONDITIONAL ASSEMBLY DIRECTIVES continued)

OPT — SET OPTION FLAG

Syntax definition:

{<1abel?} OPT (char)=<exp’{,{char>=(exp’}... {<comment>}
The OPT directive sets or resets various assembly flags. OPT ?7=EMULE&1 ;ASSEMBLE EMUL
When the label field is used, the current value of the OPT R=1 s XREF REG

location counter is assigned to the label.

The operand field contains one or more equations, separated
by commas. Each equation consists of an option character,
an equal sign, and a Well defined expression. The assembler
evaluates the expression and places its value in the
associated option flag. The comment field is optional.

The assembler resets all option flags to zero at the
beginning of each pass. Therefore, in order to select any
of the available options, at least one OPT directive with a
nonzero expression must be executed by the assembler.

1t the expression is not absolute, the assembler prints an
expression mode error (e), and the line is ignored. ILf the
option character is not found, or if the expression is not
well defined, the assembler prints an undefined symbol error
(U), and the line .is ignored.

The option flag and character pairs in the assembler are:
Character Flag Function

QFLG Assemble if ? nonzero

PFLG Assemble right or left half
CFLG Output checksum tags

LFLG Expanded 1ist options

RFLG Register cross reference
SFLG Punch symbol table to object
XFLG Output XREF to LIST file

X »n oV r o x-9

NOTE: Currently, QFLG, PFLG, LFLG, RFLG, SFLG, and XFLG
are supported by the assembler. Currently LFLG acts like
the LIST and UNL directives. These flags are defined as
follows:

QFLG (7) Conditional assembly
PFLG (#) Alternate assembly

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-45

(11.2.8.6 CONDITIONAL ASSEMBLY DIRECTIVES continued)

Any source statement can be prefaced with either a question
merk (?) or a pound sign (#). If present, this special
character must appear in the first position of the source
line, with the label field beginning in the second position.
If the first character of a source line is neither a
question mark nor a pound sign, the assembler processes the
line normally.

If the first character of the line is a question mark, then
the assembler checks the option flag associated with (?),
namely QFLG. If the value of the QFLG is nonzero (set), the
assembler skips over the (?) and assembles the remainder of
the line normally. If the flag is zero (reset), the source
line is treated by the assembler as a comment.

I1f the first character of the line is a pound sign, then
the assembler checks the option flag associated with (#),
namely PFLG. If the value of the PFLG is nonzero (set), the
assembler skips over the (#) and assembles the 1line
normally. If the flag is zero (reset), then the assembler
locks for another pound sign, (#), within the source line.
1f a second # is found beyond the first character, then the
remainder of the line immediately following is assembled as
the line of source code. If a second # is not found, then
the entire source line 1is treated by the assembler as a
comment. In other words, for source lines containing tHo
pound signs, 1if QFLG is zero, the right half is assembled,
and if QFLG is nonzero, the left half is assembled.

LFLG (L) List control flag

Currently, LFLG is associated with the LIST and UNL
directives. If LFLG is zero, the assembler outputs the
source code the the list file. If LFLG 1is nonzero, the
assembler inhibits output to the list file.

Future use of LFLG will allon selecting condensed 1listings
of DATA, BYTE, DUP, IFZ, IFN, ?, or macro functions of the
assembler.

RFLG (R) Register cross reference

Whenever the RFLG is nonzero, occurrences of the register
labels (RO-R15) are included in the cross reference listing.
The assembler does not include registers in the cross
reference unless the RFLG is set nonzero. This feature can
be turned on or off so that the registers used within a
selected portion of the program can be cross referenced.

LFLAG

OPT ?=FLG
A R1,R2

AL R2,BIAS
MOV R2,R3
BL BDEBUG

EQU 1
OPT L=LFLAG&1
OPT L=LFLAG&2

OPT L=LFLAG&3

OPT R=1
MOV R1,R2
OPT R=0
MOV R1,R2

;SET 7 FLAG
;IF FLAG, ADD BIAS

sSAVE
;D0 DEBUG

;SET LIST BITS
LIST #1 (UNL)
LIST #2 (LIST)

JLIST 81 & #2 (UML)

;START REG XREF

:STOP REG XREF

PDOS. 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-46

(11.2.8.6 CONDITIONAL ASSEMBLY DIRECTIVES continued)

SFLG (S) - Output symbol table to object file

After. the END directive has been processed on the second
pass and the entry has been output to the object file, the
assembler checks SFLG. If SFLG is zero at the end of the
assembly, the object file 1is closed normally and the
assembler exits to PDOS. If SFLG is nonzero at the end of
assembly, every symbol in the symbol table is output to the
object file, as if each symbol defined in the program had
been placed in a DEF directive. Undefined and multiply

defined symbols are not output; neither are externally .

referenced (REF) symbols. The symbol table in the object
file can be used by future symbolic debuggers.)

Since PDOS only loads until an entry tag (1 or 2) 1is read,
and since the symbol table is output after the entry tag,
this option does not affect normal PDOS loading.

XFLG (X) Cross reference to LIST file

If the XFLG is nonzero at the end of the first pass, and if
there wWas no XREF file option specified when the assembly

Was initiated, and if there was a LIST file option

specified, then the assembler performs a cross reference
during the second pass and outputs it to the LIST file,
instead of to a separate XREF file. This feature cannot be
turned on or off, but is determined by the value of XFLG at
the end of the first pass.

OPT S=1 OUTPUT SYMBOLS
OPT X=1 © ,0UT XREF TO LIST
MOV R1,R2

-

P0OS. 2.4 DOCUMENTATION : CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-47

11.3 LINK — MODULE LINKER

The PDOS LINK utility combines separately generated object
modules into a single linked output module. The linker
accepts modules that have been generated by ASM, BASIC, a
compiler, or a previous partial link.

The major function of the LINK utility is to provide symbol
resolution for external references and definitions (REF and
DEF assembler directives). The LINK program builds lists of
OEF and REF tag symbols. These are resolved by matching DEF
tag symbols with the REF tag symbols and outputting new
overlay tags nith the correct values.

Another function of the LINK utility is to define program
and data segments to prescribed boundaries for eventual
EPROM/RAM partitioning. Program segments are defined by the
PSEG assembler directive, and data segments by the DSEG
assembler directive. If these directives are not used, the
entire object module is tagged as a program segment.

Not all REF tags need to be resolved. A partial link is
possible, which can then be included in a subsequent linking
process.

The LINK utility prompts With an '*' for a commend. If a
<carriage return> 1is entered, the following summary of the
LINK commands is output to help you:

COMMAND DESCRIPTION

0, <FILE> OPEN OUTPUT FILE

1, <FILE> LINK FILE

2{,<FILE>} LIST UNDEFINED REFS

3(, (FILE>) LIST MULTIPLY DEFINED DEFS
4(,<FILE») LIST LINK MAP

5 OUTPUT PARTIAL LINK

6{, CADR>} OUTPUT OVERLAYS AND START TAG
? EXIT TO PDOS

8(, <ADR>} 'LIST/SET PSEG BASE ADDRESS
9(, <ADR>) LIST/SET DSEG BASE ADDRESS

10 RESTART

11, ¢FL>, <S>, <P> LOAD BASIC BINARY MODULE

12, <M>) 0=NO DSEG, 1=NORMAL, 2=DSEG=>PSEG
13, <FILE> LIBRARY

14(,DEFAULT} SET DEFAULT TASK NUMBER
15{,FLAG) CODE FLAG

The follonwing discussion defines the LINK commands in
detail:

Symbol resolution

EPROM/RAM partitions.

Partial link

POOS 2.4 DOCUMENTATION

e e e e e Sz=sszsssssssssozas

(11.3 LINK - MODULE LINKER continued)

*0,<file>

%1, (tile)

#2(,(tiled)

*3(, <filer)

s4(, <filer)

»*6, Caddr)

*?

*g(, <addr)

*9, ¢addr>

*10

OPEN OUTPUT FILE. An output file is
specified for linked object.

LINK FILE. The <file> 1is read and
processed to the output file. If a
previous input file has been opened, it
is first closed.

LIST UNDEFINED REF'S. A1l unresolved
REF tags are listed to your console.
These can be optionally listed to
file>.

LIST MULTIPLY DEFINED - DEF'S. AN
multiply defined DEF's are listed to
your console. These can be optionally
listed to <file>.

OUTPUT LINK MAP. The full 1link map,
including IDT's, start tag addresses,
and module DEF's and REF's, is listed to
your console. This can be optionally
listed to <file’.

OUTPUT PARTIAL LINK. The linker system
DEF's are dumped to the output file such
that they can be recreated in a
subsequent 1ink process.

OUTPUT START TAG AND CLOSE. A start
tag specified by <addr) is output and
the output file closed. If no parameter
is specified, a start tag of >0000 is
used.

EXIT TO PDOS. A1l files are closed and
the linker exits to PDOS.

SET PROGRAM BASE ADDRESS. A program
base address is set for program linking.
This applies only to the PSEG assembler
directive.

SET DATA BASE ADDRESS. A data base
address is set for program linking.
This applies only to the DSEG assembler
directive.

RESTART. A1l files are closed and all
tables set to null.

CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-48

sErEnmssssresEans

OPEN OUTPUT FILE

LINK FILE

LIST UNDEFINED REF'S

LIST MULTIPLY DEFINED DEF'S

OUTPUT LINK MAP

OUTPUT PARTIAL LINK

OUTPUT START TAG AND CLOSE

EXIT TO PDOS

SET PROGRAM BASE ADDRESS

SET DATA BASE ADDRESS

RESTART

Cﬂ'\

PDOS ‘2.4 DOCUMENTATION

8=

PAGE 11-49

£11.3 LINK - MODULE LINKER continued)

*11,<FILE)> ,<S) <P

*12,<M>

*13, (file)

*14{<T>}

LOAD BASIC BINARY RUN MODULE. A BASIC
binary file 1is 1linked to the output
file. Since the file does not contain
any TI 9900 tags, the 1linker must
generate TI object code. Special DEF
tags, symbols, and values are also
generated for linking the BASIC module
to the runtime executive module R$MODA.
The symbols generated are R$DBxx,
R$DExx, R$PMxx, and R$PTxx, where xx is
defined by LINK 14 command. Each symbol
is incremented by one after each BASIC
binary module is loaded. The RAM size
is specified in 1K byte increments by
<S> and gives the values for R$DBxx and
R$DExx. The assigned console port
number is specified by (P> and is the
value of R$PTxx.

DSEG TAG MODE. Once the system
parameters are defined, it is desirable
that the output module contain only
EPROM or program segment data in
standard T1 object tags. This means
that DSEG tags and data which are no
longer of any value are dropped for the
resulting object code. If the <M> value
equals 1, then DSEG information is
passed through normally. A zero value
disables DSEG information from being
output to the output file. A value of 2
transiates all DSEG relocation codes
into PSEG relocation codes, so that the
the application can be loaded into RAM
over the PDOS system for debugging

purposes.

LOAD LIBRARY FILE. The specified
library <file> is read and processed to
the output file. If a previous input
file has been opened, it is first
closed.

SET DEFAULT TASK NUMBER. The value <(T»
ranges from 0 to 15, and is used as the
task number for the next LINK 11 command
(link BASIC module). If no parameter
(T> is specified, the current default
task number is printed.

LOAD BASIC BINARY RUN MODULE

DSEG TAG MODE

0 = No DSEG
= Normal, pass through
DSEG -> PSEG for debugging

N o
"

*12
DSEG MODE = >0000

LOAD LIBRARY FILE

SET DEFAULT TASK NUMBER

*14
TASK NUMBER = >0000

PDOS 2.4 DOCUMENTATION

CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-50

(11.3 LINK - MODULE LINKER continued) -

*15(,flag) CODE FLAG. The value {flag)} is used to

Example:

enable and disable object output. A 1
enables, while 0 disables all object
code to the output file.

.LINK/4
- LINKER R2.4

*(CR)

COMMAND DESCRIPTION

0, <FILE> OPEN OUTPUT FILE
1,<FILE> LINK FILE

2{,<FILE>} LIST UNDEFINED REFS

3(, <FILE>) LIST MULTIPLY DEFINED DEFS
4{,<FILE>) LIST LINK MAP

5 OUTPUT PARTIAL LINK

6{, CADR>} OUTPUT OVERLAYS AND START TAG
7 EXIT TO PDOS

8(, <ADR>} LIST/SET PSEG BASE ADDRESS
9(, <ADR>) LIST/SET DSEG BASE ADDRESS
10 RESTART

11,¢FL>,<5>,<P> LOAD BASIC BINARY MODULE
12, <M> 0=NO DSEG, 1=NORMAL, 2=DSEG=>PSEG
13, ¢FILE> LIBRARY

14{,DEFAULT)} SET DEFAULT TASK NUMBER
15(,FLAG) OBJECT MODE, 0=OFF, 1=ON
*12,0

HAS >0001

*g »4000

HAS >0000

*0_MODULE

*1, R$MODA/4
*1, R$MODB/4

*1 R$MODC/4

*1_R$MODF/4

*11,PRGM0, 2,1

MODULE SIZE: 260

*14,PRGM1,2,0

MODULE SIZE: 164

*4, TASKO2

*1, SUBRRO ’
*1, SUBR#1

*4 L INKMAP

*6

START TAG = >0000

*2

CODE FLAG
*16
OUTPUT MODE = 0001

(!‘\

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-51

11.4 XBUG DEBUGGER

The XBUG debugger is an assembly language debugger which is
loaded into memory using the ALOAD utility. XBUG is entered
via a 'GO <entry address)>'. The first thing XBUG does is
alter XOP 12 for breakpoints. Four breakpoints are
available as well as memory dumps, single stepping, and
various inspect and change modes.

XBUG prompts with a question mark (?) and accepts single
letter commands. These letters are followed by up to three
parameters, depending on the command. A1l numbers are
hexadecimal. Parameters are separated by either commas or
blanks. The following illustrates how to load and execute
XBUG:

-ALOAD XBUG
*IDT=XBUGZ2. 4
*ABS ADR=>0070
LAST ENTRY ADR=>6000
.GO »6000

XBUG R2.4

74CRY

A {PC}

B {#){adr}

C from,to,into
D from{, to}

E base

F from,to,data{+}
6 {PC}{,HS}{,SR}
L FILE

M {adr}{,adr}

P {PC}

Q {base},{bits)
R (#)

S

U {unit)

W (WP}

X

Y {SR}

P4

?

Breakpoint XOP = 12

PDOS 2.4 ‘DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-52

(11.4 XBUG DEBUGGER continued)

Assemble

The line by line assembler allows T1 9800 assembly language A (addr)
instructions to be assembled and loaded into memory. The ,
address is automatically set to the task's entry point,

unless the {addr} parameter is specified.

$TEXT Load ASCII text into memory
/<adr) Assemble at new address
+constant Load decimal constant
“4binary numbers Load binary

Yhex address

$ is PC location

Breakpoint

The breakpoint command lists, sets, and clears the four B
breakpoints supported by XBUG. Breakpoints may be placed on B #

any non-execute (X) instruction. The number of words for B #,<ADR

the instruction is automatically calculated when it is set.

The °'B' commend wWith no arguments 1lists all current
breakpoints. The 'B' command followed by a number from 1
through 4 clears that particular breakpoint.

The '‘B' command followed by a number and an address sets a
breakpoint. The instruction is disassembled and stored in
the breakpoint table. When a ‘G’ (go execute), ‘S’ (go
single step), or a 'X' (Exit with breaks) command is
executed, the breakpoint addresses are loaded With an XOP 12
instruction.

Khen one of the points is executed, the XOP 12 routine in

XBUG performs a break, and the XBUG menu is entered. The
break comes after the instruction is executed.

Copy memory

The block of memory from <adr1> through <adr2> is copied C <adr1>,<adr2>,<adr3>
into another block of memory beginning at <adr3). C FROM,TO,INTO

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-53

(11.4 XBUG DEBUGGER continued)

Disassemble
Memory from <adr1)> to <(adr2)> is disassembled to the screen D <adr{,<adr2)
in TI1 9900 assembly language format. The instruction D FROM{,T0}

address is followed by a colon, the hexadecimal instruction
code(s), and the ASCII assembly language instruction. If
parameter <adr2> is omitted, only one instruction is
disassembled. Striking a character during a block
disassembly causes the output to pause for easier viewing.

Set disassembly base

The E command sets a base address which is subtracted from E <base>
all disassembly addresses. This allons easier correlation
of the disassembly with the source listing.

FPind data
Memory contents from <adr1> through <adr2) are searched for F <adr1>,<adr2>,<data>{+)
the byte or word of <data>. Byte data is specified by F FROM,TO,DATA{(+}

folloning <data> with a plus sign (+). Otherwise, only
Words are compared. The addresses within the block that
match, <if any>, are 1listed, wWith TABs, to the screen.
Striking a character during the address 1isting causes the
output to pause for easier vieWwing.

Go Execute

XBUG begins target program execution with the 'G' command. G {<adr)}{,<adr2>}{,<adr3»}
Optionally, the program counter, workspace, and/or status G {PC}{,HS}{,SR}

register can also be specified by using the <adr1>, <(adr2),

and <adr3> parameters, respectively. If no parameters

follow, the current PC, WS, and SR are used. The

breakpoints, if any, are loaded With the XOP 12 trasp before

control is passed to the target program.

Load file
The 'L' commend loads the PDOS file named <file> as if it L <file>
were simply being run from PDOS. The assembly language L FILE1

program can be typed either '‘OB‘' or 'SY'. The program entry
address is printed, but the program is not executed.

PDOS 2.4 DOCUMENTATION CHAPTER 11 EDIT-ASM-LINK-XBUG

(11.4 XBUG DEBUGGER continued)

Memory IAC

Memory can be dumped, inspected, or changed wWith the 'M'
command. One or no arguments enters an inspect and change
mode. A <CR> opens or closes a location. A <SP> closes a

location (if open) and moves to the next location. a <*I>

goes indirect and <~C> returns to the XBUG menu. If two
addresses are given, the contents of the memory from <adr1
through <adr2> is displayed in both hexadecimal and in
ASCII. Striking a space bar pauses the display for easier
viewing.

CRU IAC

The CRU lines are examined and changed by the 'Q' command.
The CRU base eddress is specified by <base>. The number of
CRU bits is specified by <bits>. (Default is 16.) The
output consists of the CRU address followed by the number of
bits being examined and the contents. A <(SP)> moves forward
and <ESC> moves backward. A <~C)> exits to XBUG menu.

Program Counter

The user program counter is examined and changed wWith the
‘P’ command.

Register IAC

User Workspace registers are dumped With a single 'R’
command. A specific register is opened if the 'R’ is
followed by a register number in hex (e.g. RF displays the
contents of register 15). A <SP> moves to the next register
and (ESC> to -the previous. A <~C> returns to the XBUG menu
and a <*I> goes indirect and enters the memory modify mode.
(See the 'M' command). ‘

M {<adr1){,<adr2»}
M {BEGIN){,END}

Q (<base’},{<bits>)

P {<adr>}
P {PC}

R (#}).

~

"PDOS 2.4 DOCUMENTATION

CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-55

(11.4 XBUG DEBUGGER continued)

Single step

The 'S’ commend enters the target program in a single
stepping mode. Breakpoints are loaded, along With the PC,
WP, and ST registers. The first instruction is disassembled
and displayed, and XBUG waits for a command, which consists
of a single character. Legal commands are:

(space) Execute instruction, show next.

~C Cancel and return to XBUG menu.
“R BDump registers.
*S Dump memory snapshot.

The address is followed by a colon and the memory contents
of the current PC. The disassembled mnemonics are also
displayed along wWith the contents of the source and
destination operands before execution. If a (space’ is
entered, a temporary break is loaded beyond the instruction,
the instruction is executed, and control is returned to XBUG
through XOP 12. The results of the operation are then
displayed, along with the resulting status register. XBUG
then waits for another command in single step mode. All
POOS calls, and all other XOPs, are not stepped through, but
execute in real time, transparent to the debugger. The
execute instruction ‘X' cannot be stepped through; a user
breakpoint must be used instead. 1f a user break is single
stepped through, control returns to the XBUG menu.

A control C <~(> cancels single stepping wWithout executing
the current instruction and control returns to the XBUG
menu. A control R <“R> dumps to the screen the current
contents of all the registers and then waits for another
single step command. A control S <~S> dumps a block of
memory to the screen as a memory snapshot. The limits of
the block that is dumped are set by the last previous block
limits used wWith the °'M' command. To set the snapshot
limits, simply exit from single step with a +*C, dump the
desired range wWith 'M' (only a few lines of dump is best),
and return to single stepping With an ‘'S'.

PDOS 2.4 DOCUMENTATION

CHAPTER 11 EDLT-ASM-LINK-XBUG

PAGE ~*11-56

(11.4 XBUG DEBUGGER continued)

Set UNIT

The PDOS output unit is set with the ‘U’ commend. Al

subsequent output is directed to <unit>. This is helpful’

when spooling debug output to either a printer (via a $TTA
driver) or a file using the 'SU' command of PDOS. The 'U’
command in XBUG is identical to performing a ‘UN' command
from POOS.

Workspace

The user workspace pointer is examined and changed with the
‘W’ command

Exit to PDOS w/Breaks

XBUG returns to PDOS with the ‘X' command and sets all
breakpoints. I1f the target program is run from PDOS with
the ‘G0’ command, the ¢first encountered breakpoint wWill
return to the XBUG menu.

Status Register

The user status register is examined and changed with the
'Y' command.

Exit to PDOS

XBUG returns to PDOS with the 'Z' command without setting
the breakpoints.

i

U <unit>
U3

- K {HP}

Y (SR}

;0utput to file

r*

)

PO0S 2.4 DOCUMENTATION

i

CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-57

(11.4 XBUG DEBUGGER continued)
XBUG example:

.ALOAD XBUG
*1DT=XBUG2.4
*ABS AOR=>0070
LAST ENTRY ADR=>6000
.GO »6000

XBUG R2.4

?

A {PC}

B (#){adr}

C from,to,into
D from{, to}

E base

F from,to,data{+}
6 {PC}{ NS} {,SR}
L FILE

M {adr}{,adr}

P {PC)

Q {base},{bits)
R (#)

S

U {unit}

H (WP}

X

Y {SR}

AO0O: 02E0 LWP1 >BOOO

AOO4: 2F5B +>2F5B
A006: A100 +>A100
AO0B: 04CO CLR RO
AOOA: 04C1. CLR R1
AOOC: AC40 A RO,R1
AOOE: 0580 INC RO
A010: 17FD JNC >AOOC
A012: /A100
A100: OACD +>0A0D
A102: 4D45 $MESSAGE
A104: 5353

A106: 4147

A108: 4500

Load XBUG

Entry point is at memory address >6000

List XBUG menu

Instant assemble at address >AQ00

Control C breaks to XBUG

PBOS 2.4 ‘DOCUMENTATION

CHAPTER 11 EDIT-ASM-LINK-XBUG

PAGE 11-58-

(11.4 XBUG DEBUGGER continued)

7DA000, A%

AD0O: 02E0 BOOO

A004: 2F5B
AOD6: A100
ADO8: 04CO
AODA: 04C1
AOOC: A040
AOOE: 0580
A010: 17FD
7RA000
PC=7220 AOOO
75

AOCO: 0ZEO BOOD

AOD4: 2F5B
MESSAGE
AODB: 04CO
"AODA: 04C1
AOOC: A040
AOOE: 0580
AD10: 17FD
ADOC: AD40
ADOE: 0580
AD10: 17FD
ADOC: AD40
AOCE: 0580
781,A012
AD12: 5E53
76

» YBREAK-1
A012: 5E53
R

LWPI >B0OOO
XOP *R11,R13
A RO,R4

CLR RO

CLR R1

A RO,R1

INC RO

JNC >AOOC

LWPI >B0O0O
XOP *R11,R13

CLR RO
CLR R1
A RO,R1
INC RO
JNC >A00C
A RO,R1
INC RO
JNC »A00C
A RO,R1
INC RO

SZCB *R3,*R9+

S2CB *R3,*R9+

$=0288

$=0000

$=0001

$=0002

D=2e47

0=3730

D=0000

D=0000

0=0001

0=0001

R=2E47

R=

R=0001

R=0001
R=0002

R=0003

0=0002-C

EO=0000 R1=8000 R2=4C41 R3=5354 R4=2045 R5=4E54 R6=5259 R7=2041
R8-4452 R9=3D3E RA=3630 RB=3030 RC=0D09 RD=2E47 RE=4F20 RF=3E36
HP=B00OO PC=A012 SR=3005

?F0,2000,7F
1788 1802
?F0,2000,7F+

00CF 052E 129F 1789 19A2 1814 1B18 1BBC

1803
®
PC=A012
™
WP=B00O
7y
SR=3005

Disable from >AC00 to >A010

Examine PC

DOOSingle step
D005

Doos
D005
D005
2005
€005
€005
€005
€005
€005
€005

Set break point

Continue execution

Dump registers

Find all >007F constants from >0000 to >2000

Find all »7F constants from >0000 to >2000

Examine PC

Examine Workspace

Examine status register

~

r/’W’

PDOS 2.4 DOCUMENTATION

CHAPTER 11 EDIT-ASH-LINK-XBUG

PAGE 11-59

(11.4 XBUG DEBUGGER continued)

7L, SENOM
ENTRY ADDR=7220
s
AD12: 5E53
AD14: 3E20 6475
7p7220

=A014 7220
3
7220: 2FDO
7222: 120A
7238: 0203 2400
723C: 0204 2408

' 7240: 0205 223t

7244: C020 0000
7248: 1505
7254: 0225 0032
7258: 8103
725A: 14ED
725C: D073
725E: 11FA
7254: 0225 0032
7258: 8103
725A: 14ED

003C: D073
003E: 11FA
0034: 0225 0032
0038: 8103
003A: 14ED
003C: 0073
003E: 11FA
0034: 0225 0032

. 0038: 8103

003A: 14ED
003C: D073
003E: 11FA
0034: 0225 0032
0038: 8103

SZCB *R3,*R9+
DIV 9>6475,R8

XOP *RO,R15
JLE »>7238

LI R3,>2400
LI R4,>2408
LI R5,>223E
MOV 3>0000,RO
JGT >7254

AL R5,>0032
C R3,R4

JHE 7236
MOVB *R3+,R1
JLT >7254

AL RS5,>0032
C R3,R4

JHE »7236
MOVB *R3+,R1

MOVB *R3+,R1
JLT >0034

AL RS,>0032
C R3,R4

JHE 0016
MOVB *R3+,R1
JLT »0034

AL RS,>0032
C R3,R4

JHE >0016
MOVB *R3+,R1
JLT >0034

AL RS,>0032
C R3,R4

$=4400
$=C038

$=2400

S=FFFF

5=2401

S=FFFF

S=FFFF

$=2402

S=FFFF

$=2403

=FFFF

$=2404

D=3044
=4452

D=3E36
D=5354
D=2045
D=4E54
D=0000

D=223€
D=2408

D=0000

D=2270
D=2408

D=FF0O

D=FF00

D=22A2
D=2408

D=FFO0

=2204
D=2408

D=FF00

D=2306
D=2408

R=0000
R=3944

R=4452
R=3E36

R=2400
R=2408
R=223E
R=2FDC

R=2270
R=2408

R=FF00

R=22A2
R=2408

R=FFO0
R=FF00

R=22D4
R=2408

R=FF00

R=2306
R=2408

R=FF0O0

R=2338

Load file SENDM

3005ingle step
D005

Set PC to address »7220

DOOkontinue with single stepping
3005
0005
€005
coos
€005
Co05
€005
€005
0005
0005
8005
8005
€005
0005
0005

Set disassembly base of >7220
000Kontinue
8005
8005
Cco05
0005
0005
8005
8005
Coo5
0005
0005
8005
8005
€005

PDOS 2.4 DOCUMENTATION

CHAPTER 11 EDIT-ASM-LINK-XBUG PAGE 11-60

TASK

*0/0

75

0000:
0002:
0018:
001C:
0020:

7z

2FNC 2306 2F7C 159E 2F7C 158E 2FOC 16F0
2F7C 020E 2F7C 020DE 2F7C 020E 2F7C 020E
2F7C 02DE 2F7C 159E 2F7C 159E 2F7C 159E
2F7C 159E 2F7C 159E 2F7C 159E 2F7C 159E
2FSC 189C 2F9C 1890 2F9C 16886 2F9C 18A8
2F9C 1A28 2F9C 1B2A 2FSC 1BAS 2FSC 187E
2F9C 4DBC 2F9C 585k 2F9C 5954 2FDC 320A
602A 63AE 2FOC 170C 2FOC 1736 2FDC 1758
AS5A FFFF 280D 6200 2FDC 1740 OZEF 007D
AACO 9B3D 0078 2E64 0080 0180 OEQO 0AQO
0A40 0AS0 QACO 0BOO 0019 0001 OCOA 0014

PAGE TIME T8 HS PC SR BM

NYNIME
TRYIRVE
TR
Liodbo)
fooidoudd.
TATARTS

VAW .}
Al
A
YA
.B8/..(
(/...

/M7 YR YT,

m¥*c./\. . /\
%Z..4]b./\
*,.=.x.d..
Baoe@aons

EM CRU

B/ALX
.9.0.)

PORT

0 3 »7020 >?718A >04C2 >D005 »>7000 >E0CO >0080 >0001
.60 6000
XBUG R2.4

2FD0 XOP *RO,R15
120A JLE »0018

0203 2400 LI R3,>2400
0204 2408 L1 R4,>2408
0205 223E LI R5,>223E

D=003E

D=1D4A
D=4780
D=7122

R=2408
R=003E

R=2400
R=2408

Dump memory from >0000 to >00A0

Exit to XBUG monitor

