PDOS 2.4 DOCUMENTATION CHAPTER 10 PO0S BASIC COMMAND SUMMARY S PAGE 10-1

CHAPTER 10

PDOS BASIC COMMAND SUMMARY

The PDOS BASIC language 1is composed of commends,
statements, operators, and functions. Commends are used to
list, edit, save, load, execute, and debug your program.
Commends begin with the command name and execute
immediately. Statements begin with a line number and are
used to perform a task or solve a problem. Operators
perform operations on veriables and are used wWithin a
statement. Likewise, functions are used within a statement
and return specific values.

10.1 Function: ABS......c.cevveeecencrcncanes cesesenns 10-4
10.2 Function: ADR.......cceeveeennnnees tetressesenean 10-4
10.3 Statement: ALOAD...... teeiesesssasesssasentnsans 10-4
10.4 Operator: AND........ccevvrereniennennannnnes ve...10-5
10.5 Function: ATN.......cveitiinerececncrccnnccnans ..10-5
10.6 Statement: BASE......... teceesecsnsenaas veeerses.10-5
10.7 Statement: BAUD.....cocceeerornecccccencnssnansss10-6
10.8a Function: BIT............ teeesessann cesesessaanns 10-7
10.8b Statement: BIT..........ccvvnune teeseeescannecons 10-7
10.9 Statement: BYE....... teteeessesesseesssesnesnasns 10-7
10.10 Statement: CALL........civviiineerinnerranneenne .10-8

10.11 Statement: CLEAR.....ceccvrnnvnnrcnsanncnsssesas10-11
10.12 Statement: CLOSE.......eovveverersnrecencsosesss10-11

10.13 Variable: COM............. PRI i 2 7.
10.14 Function: C0S.........eeeenn. e, 10-13
10.15a Function: CRB........ e e 10-13
10.15b Statement: CRB............ vesesennas teescsenenes 10-13
10.168 Function: CRF............ eeeesecencsancansasnos 10-14
10.16b Statement: CRF................ e .10-14
10.17 Statement: DATA...... e, e 10-15
10.18 Statement: DATE........ceueeennnernnnnennnnennns 10-15
10.19 Statement: DEFINE................. s 10-16
10.20 Statement: DEFN........... ereeeacecersracacanas 10-17
10.21 Statement: DELETE...... J R o 2
10.22 Statement: DIM.........oveeeennnnn. e,10-18
10.23 Statement: DISPLAY.........cvveveeeennnnnnnnnn..10-18
10.24 Statement: ELSE.........ccevvnn.. e, 10-19
10.25 Statement: EQUATE.........ceuueereeennnnnnns10-20
10.26 Statement: ERROR........ccccvveneene cesecenane ..10-21
10.27 Statement: ESCAPE........ceevvnneeernnnnnnneeens 10-21
10.28 Statement: EVENT........ueveerennnnneneeeeennnns 10-22

10.29 Function: EVF.......ccviiinnnees veanes ceeeeees .10-22

sEssssszzslissses
PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY . » PAGE 10-2

(CHAPTER 10 PDOS BASIC COMMAND SUMMARY continued)

10.30 Function: EXP.....ccevevevcrnccnccevoncenconsses10-23
10.31 Statement: EXTERNAL...vccevveevvncceccccccaeesss10-23
10.32 Statement: FILE....cceeeesverncenccsaccseeneassa10-24
10.33 Command: FILES....eeeeecncecosccenensncncnnns ...10-28
10.34 Statement: FNEND....oveveeecnercrccncnncnnneesas10-29
© 10.35 Statement: FOR......cocveeencencecncaccaceenssss10-30
10.36 Statement: FNPOP....cveeeeveecncscnnncensccesass10-32
10.37 Function: FRA.....ceveececcscescrsesccsnscnseses10-32
10.38 Statement: FREE....,4cccveecencrccnnss ceeeees ...10-33
10.39 Statement: GLOBAL......cccovvvveercncecconoasssa10-34
10.40 Statement: GOPEN........ceecevveenononsocosseoss10-34
10.41 Statement: GOSUB.......cevvvevevsnvescccccsccees10-35
10.42 Statement: GOTO.....cceeveeuenssecncsesscncecsss10-35
10.43 Statement: IF.........cciivvivernrenncasaaees10-36
10.44 Function: INP.....ceeeveevuvesnnonassosesooeeessl0=36
10.45 Statement: INPUT............. . (14
10.46 Function: INT.....cvvevevreecenencncnccanennes..10-39
10.47 Function: KEY...eeeeevoeevvroononnancans veeeeess10-39
10.48 Statement: LABEL.......vvvvicenverenecnacnnns ...10-40
10.49 Operator: LAND.....cveeevrecernnncacecennnnaas ...10-40
10.50 Function: LEN.....coeeeevoreeesneccennocecenes..10-40
10.51 Statement: LET....eoceeeonnscencscnncencccneeess10-41
10.52 Command: LIST and LISTRP.........cc0vvveeeeee...10-44
10.53 Operator: LNOT....cceeeeevesonssccsasncncacnees.10-45
10.54 Statement: LOAD.....vcvcecrsernocracsccccnneeess10-45
10.55 Statement: LOCAL.......cevvenerveccenaeeenness..10-46
10.56 FunCtion: LOG...ceesscsesccnnncconsnsescanaeeess10-47
10.57 Operator: LOR....ceceseseccccccennnnnssncenesasns10-47
10.58 Operator: LXOR....cceeeeeceececncnccnncnneeesess10-48
10.59 Variable: MAIL....ceeeveereneecnnneeeneenennsse.10-48
10.60 Function: MCH.....coeevevevecnenncennnenennns...10-48
10.6%a Function: MEM...eceveeveennncnnns ceeenes veseeea.10-49
10.6%b Statement: MEM............... R 1 2 {*]
10.62a Function: MEMH....eicveeeeeeranrenrennenennssss.10-560
10.62b Statement: MEMW.........cccvievvvnernnnennnns...10-50
10.63a Function: MEMP..........cevinnnnnnnn. ceeeseeess10-51
10.63b Statement: MEMP.................. tereeesssaansas10-51
10.64 Function: NCH.....ccvecveeeennnnnnnnnnnennns .ees.10-52
10.65 Command: NEW.....eceoneereenonccreeecacesnneasss10-62
10.66 Statement: NEXT.....ccovveveeencenencenneennesss10-63
10.67 Statement: NOESC.......ccceeevvvvennnneencnennsse10-63
10.68 Operator: NOT........... teeeessseserineancnns ...10-54
10.69 Statement: ON....covevivineccereeninnnennenness.10-54

)

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY ' PAGE 10-3

(CHAPTER 10 PDOS BASIC COMMAND SUMMARY continued)

10.70 Statement: OPEN................ ceetesasecnescnns 10-65
10.71 Operator: OR.......cceveeecesssnscensncarscness.10-65
10.72 Statement: PDOS........coovnevverrencncecaness..10-56

10.73 Statement: POP.......c.cevvecrrecacncevenacess..10-56
10.74 Statement: PRINT.........ccvvevvenvnnes feeecconns 10-57
10.75 Statement: PURGE........... tesssescssssenssassss10-60
10.76 Statement: READ.......... ceetreneenes veesveess..10-60
10.77 Statement: REM.........cvvvvevvncnccnsenannsess.10-61
10.78 Statement: RENAME.........ceocevseesenssessscss.10-61
10.79 Statement: RESET........cocvivevncncnnns veeasee.10-62
10.80 Statement: RESTORE............... P (1 1V 4
10.81 Statement: RETURN........ccvvvvnnnvecronnneass..10-63
10.82 Veriable: RND................ eecesans eeecceaes 10-63
10.83 Statement: ROPEN........cccvveveencsnnsnnesss...10-64
10.84 Statement: RUN............... ceranees ceeerraanes 10-64
10.85 Command: SAVE..........ccicvivevrevonoonsnsnonns 10-65
10.86 Command: SAVEB..........cco0cuen Ceeeresrecseenas 10-65
10.87 Function: SGN........ R [1]
10.88 Function: SIN...........0uuen seeressesasnsssssss10-66
10.89 Command: SIZE.......ccvcuvevrevsccrcssoasaeesess10-67
10.90 Statement: SKIP......... teesesenssonsssrirssns..10-68
10.91 Statement: SOPEN........ccvvvvevnvnnannes cescnens 10-68
10.92 Statement: SPOOL..... ceieasatessasranansassesess10-69
10.893 Function: SQR.......... cesecresssasscsessasssss.10-69
10.94 Function: SRH......covvvuvvevscesnnsacanssconeessd0-70
10.95 Command: STACK.......ceveevnneees cedanes ceecinen 10-70
10.96 Statement: STOP............... A (1 1A
10.97 Statement: SHAP.........cccvuunee ceesesseannsras 10-71

©10.88 Function: SYS.......ceveieevccnncesscancncnsness10-72
10.89 Function: TAN........coeveeverrvsccososensennsss10-73

10.100 Statement: THEN.........ccviivvirrrcrencecasnss.10-73
10.101 Function: TIC.......ciiiiiiierecnrcnnconnsnnnes 10-74
10.102 Statement: TIME.......... ceeeseseens teessensenns 10-74
10.103 Statement: TRACE.......cvvvvevvvnnnns cecneccanns 10-75
10.104 Function: TSK......vocvvveerenenreocacosonsannnns 10-76
10.105 Statement: UNIT.......ociiiininrerennnnnnnsnnnnns 10-76

10.106 Statement: WALT...........ccovvinnnenne. cesanaes 10-77

z==jsshassas

PDOS 2.4 DOCUMENTATION ' CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-4

SmI=s

10.1 Function: ABS

Format: ABS <exp>
Definition: Return absolute value of <exp> LIST
10 PRINT ABS[5],ABS[0],ABS[-100],ABS[-0.5]
20 STOP

- The ABS function returns the absolute value of <(exp). RUN
5 0 100 0.5

STOP AT 20

10.2 Function: ADR

Format: ADR <exp>
Definition: Return memory address of <exp> LIST
10 MEM[ADR[A]])=72
20 MEM[ADR[A]+1])=69

The ADR Function returns the memory address of the 30 MEM[ADR[A]+2]=76
expression. This is wuseful in passing perameters to 40 MEM[ADR[A]+3]=76
assembly subroutines or in accessing byte information within 50 MEM[ADR[A]+4)=79
variables. 60 MEM[ADR[A]+5]=0
70 PRINT $A;

RUN

HELLO

STOP AT 70

10.3 statement: ALOAD

Format: ALOAD <string>, <exp1?, (exp2)
Definition: Load object file LIST
10 DIM A[100]: A=ADR A[0]
20 ALOAD "GRAPH:0DBJ",A,101*6
The ALOAD statement uses the PDOS load file primitive 30 EXTERNAL PLOT=A
(XLDF) to 1load a 9900 object module into memory. The file 40 EXTERNAL COLOR=A+4
name is specified by <string>. The first expression <(exp1) 50 COLOR=5
is the base address for the load operation. The maximum 60 PLOT=5,100,200
ellonable length of the module (in bytes) is given by . ’

(exp2).

)

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS. BASIC COMMAND SUMMARY

10.4 Operator: AND

Format: <exp1> AND <exp2>
Definition: Returns TRUE if <exp1> and <exp2> are
nonzero

The Boolean operator AND compares two arithmetic
expressions for nonzero values. If both are nonzero, the
expression returns TRUE or 1. Otherwise, a zero is
returned.

10.5 Funétion: ATN

Format: ATN <exp
Definition: Return arctangent of radisn <(exp’

The ATN function returns the arctangent of the expression
argument. The argument is given in radians.

10.6 Statement: BASE

Format: BASE <exp>
Definition: Set CRU base for CRB and CRF functions

The BASE statement sets the CRU base value to <exp>. The
base value is used by the BASIC functions CRB and CRF and is
loaded into register R12 when the CRU functions are
executed. The base remains unchanged until another BASE
statement is executed.

See also 10.15 CRB and 10.16 CRF.

LIST

10 I=1 AND 2: J=1 AND O

20 IF I=1 AND J=0: PRINT "OK!"
30 STOP
RUN
OK!

STOP AT 30

LIST
10 FOR I=1T705
20 PRINT I*ATN 1
30 NEXT I
40 STOP
RUN
0.768539816
1.5707963
2.3561945
3.1415927
3.9269908

STOP AT 40

LIST

10 BASE 040H

20 FOR I=0 TO 4

30 IF CRB[I1]

40 THEN PRINT "X *;
50 - ELSE PRINT "0 *;
60 NEXT I
RUN
XX0XX

STOP AT 60

© e o o o 4 g

————

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY

PAGE 10-6

e e o e e e e o

10.7 Statement: BAUD

Format: BAUD <exp1?,<exp2>{,<exp3’)
Definition: Initialize TMS9802 user port <exp1> to
baud rate <exp2) and optionally set
CRU BASE and UNIT 2 to <exp3>

The BAUD statement initializes any one of the eight POOS BAUD 2,1200

1/0 ports and binds a physical TMS8902 UART to a character BAUD 3,9600 S

buffer. The command sets the 9902 character format,
receiver and transmitter baud rates, and enables receiver
interrupts.

The first expression (exp1> selects the console port and Port #1 = >0080

Set aux port to 1200 baud

et port 3 to 9600 baud

TM3900/101MA main port

renges from 1 to 8. The system variable ITBCRU, located at 2 = >0180 TM3900/101MA auxiliary port
address >0096 (>00B6 for 102), points to the input CRU base 3 = >0E0O0 ER3232 sel #1 page #0
table. This teble binds a physical 9902 UART to a port 4 = >0A00 ER3232 sel #3 page #0
character buffer end is generated during PDOS 5 = >0A40 ER3232 sel #3 page #1
initialization. Entries in this table are changed by the 6 = >0A80 ER3232 sel #3 page #2

BFIX utility or by the third expression, <exp3>, of the BAUD 7 = >0ACO ER3232 sel #3 page #3
statement. 8 = »0B00 ER3232 sel #3 page #4

The TMS9802 UART's control register is initialized to 1 9902 initialized for 11 bits:

start bit, 7 bit character, even parity, and 2 stop bits (11 1 start bit

bits). The receiver and transmitter baud rates are

7 bit character

initialized to the same value, according to expression 1 even parity
<exp2>., The (exp2) expression ranges fron 0 to 7 or the 2 stop bits
corresponding baud rates of 19200, 9600, 4800, 2400, 1200,
600, 300, and 110. Either perameter type is acceptable. (baud rate> 0 = 19200 baud
. 1 = 9600 baud

If a minus (-) precedes the port number, then the 2 = 4800 baud
associated CRU base address is stored in the UNIT 2 (U2C(9)) 3 = 2400 baud
variable. The third expression <exp3’> is optional and binds 4 = 1200 baud
a logical port to any 9902 UART CRU base. 5 = 600 baud

6 = 300 baud

7 = 110 baud
See also 10.105 UNIT.

BAUD 3,0,0A40H Set port 3 = YA40

BAUD -3,9600

3 19200 baud
UNIT 2 = port 3
@ 9600 baud.

PDOS 2.4 DOCUMENTATION CHAPTER 10 RDOS BASIC COMMAND SUMMARY ~ PAGE 10-7

10.8a Function: BIT

Format: BIT[<var>,<exp>]
Definition: Returns <exp> bit of <var>

The BIT function returns the value of a specific variable
bit. The variable name is specified by <(var), while <exp>
specifies the bit displacement. The first bit number is 1.

10.8b Statement: BIT

Format: BIT[<var>,<exp1>]=<exp2>
Definition: Assign bit <exp1> of <var> a value of (exp2>

The BIT statement assigns a zero or one to any bit in a
variable. <(exp2> evaluates to zero or nonzero. <exp?
specifies the bit position within variable <(var>. The first
bit number is 1.

10.9 Statement: BYE

“r

Format: BYE
Definition: Return to PDOS monitor

The BYE statement exits to the PDOS monitor from BASIC. If
no other program is run, BASIC can be entered again wWithout
destroying the old program. Resident PDOS user commands do
not alter memory.

LIST
10 INPUT VAR

20 FOR I=0 TO 47

30 IF I-INT[I/16]*26=0: PRINT * *;

40 PRINT #"0";BIT[VAR,I+1];

50 NEXT I

60 PRINT : GOTO 10
RUN

7

0000000000000000 0000000000000001 0000000000000000
73.1415926

0100000100110010 "0106001111110110 1001101000100110

7-3283

0000000000000000 1111001100101101 000000000Q000000
70.1 :
0100000000011001 1001100110011001 ‘1001100110011010

N=4*ATN 1
:N; 3.14159265
BIT[N,1]=1

:N; -3.14159265

LIST
10 REM PROGRAM HEADER
BYE ' :
.SP 1
FREE=226, 190
USED=455/476
EX
*READY
LIST
10 REM PROGRAM HEADER

PDOS 2.4 DOCUMENTATION

zzzzzssanshs
CHAPTER 10 PDOS BASIC COMMAND SUMMARY

S2szss

PAGE 10-8

10.10 Statement: CALL

Format: CALL <exp>...
CALL #<¢exp>
Definition: User defined function or

assembly language call

The CALL statement evaluates all expressions separated by
conmas. This is particularly useful for calling user
defined functions where the function value is not required.

If the first expression is preceded by a '#', then an
assembly language routine is called. If <(exp> evaluates to
a number less than 256, then the value is used as an index
into the BASIC CALL table for the subroutine address. If
<exp> is greater then or equal to 256, then the value is
used as the memory address of the user assembly language
subroutine. By using the BASIC CALL table, programs do not
have to be modified when using the standalone run modules.

The CALL table is located at memory address »>2240. CALL #0
corresponds to the first entry in the CALL table (>2240),
CALL #1 the second (>2242), and so forth.

BASIC communicates with the routine through the COM[]
array. The address of COM[0] is passed to the subroutine in
register R7. ’

The user subroutine call is via a Branch and Link (BL)
instruction and hence register R11 contains - the return
address to the next line processor. Registers R7 through
R11 must be preserved by the user subroutine!

Other BASIC system routines are accessible through register
R11 as well. These are defined as follows:

B *R11 JMP NLIN. The BASIC interpreter
continues executing on the same line as
the CALL.

B 92(11) JMP LINE. The BASIC interpreter moves
to the next line regardless of
parameters or statements on the same
line as the CALL.

BL 34(11) BL 3EVAL. Evaluate the next expression
in the CALL perameter 1ist. Return
address in register R2 and the delimiter
in register RO. Only registers R5, R6,
and R7 are preserved.

LIST
100
110
120
130
140
150
160
200
210
220
230
240
250

RUN

PRINT "--- TOWER OF HANDI ---"
INPUT
INPUT “ENTER STARTING PEG",P
INPUT "ENTER FINISHING PEG",R
Q=6-P-R

CALL FNMOVE[N,P,R,Q]

STOP

DEFN FNMOVE[N,P,R,Q]

IF N=0: FNEND

CALL FNMOVE[N-1,P,Q,R]

PRINT "MOVE";P;" TO";R

CALL FNMOVE[N-1,Q,R,P]

FNEND

--- TOWER OF HANOI ---
ENTER NUMBER OF DISKS? 3
ENTER STARTING PEG? 1
ENTER FINISHING PEG? 3

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

STOP

1703
170 2
37102
1703
2701
2703
1703

AT 160

Assembly routine:

»FO00

LIST
10
20
30
40
50

RUN
1

12

STOP

AORG »2240
DATA >FO00
AORG YFOO0
INC 32(7)
RT

JCALL 80

COM[0]=10
CALL #OFOOOH
PRINT COM[0]
CALL #0

PRINT COM[0]

AT 50

"ENTER NUMBER OF DISKS“ N

,BASIC CALL TABLE

;INCREMENT COM[0]

-

PDOS 2.4 DOCUMENTATION 'CHAPTER 10 PDOS BASIC COMMAND SUMMARY

' PAGE 10-9

(10.10 Statement: CALL continued)

BL @8(11) BL 9EVSD. Examine the next parameter
of the CALL list for a string variable
or literal. Status'returns HIGH if a
string verisble is found, LOW for a
string 1itersl, and EQUAL if neither is
encountered. For strings, register R2
.. 18 returned pointing to the string and
" register RO contains the delimiter.
Only registers R5, R6, and R7? are
preserved.

XOP <arg>,8 EVFIX <arg>. XOP 8 evaluates and fixes
the next parameter of the CALL list to a
2's complement, 16-bit number. The
<arg> can be any register (except R11)
and the delimiter is returned in
register RO. Like the other two calls,
only registers R5, R6, and R7? ere
preserved.

For the three calls (BL @4(11), BL 8(11), and XOP
<arg’,8), register R8 contains the program counter, RS
points to the task control block, and R10 is the stack
pointer. The BASIC stack can be used for storing registers
during execution of the subroutine. Parameters are pushed
onto the stack by moving indirect R10 auto increment (MOV
<arg>,*R10+), and popped from the stack by first
decrementing R10 by two and moving the data off (DECT R10)
MOV *R10,<arg?).

Delimiters are returned in register RO. They are left
justified byte tokens and ‘are defined as follows:

00 <(CR> »0C

”
01 ‘10 0D %
02 ‘TAB* »0E \
03 “STEP' YOF !
04 ‘THEN' 10 g
06~ ‘ELSE' 11 .
)06 =) 212 [
07 : »13]
08 ? 14 "
09 # , »15 '
»0A ., o " 16 $
»0B ; S

Subroutine errors are reported to BASIC by executing the
word Y2ECO+error #. I1f the error # is greater than 31, then
the word »>2EE0 1is executed, wWith the error # in the
follonwing word.

DATA >2ECO+5

DATA >2EEO,88

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY

o o o e o e v -
——=

(10.10 Statement: CALL continued)

The following BASIC program illustrates the call procedure

With the assembly subroutine to the right: 1

2

3

LIST 4

10 DIM A[20],L[10] 5
20 ALOAD "TEMP1",ADR A[0},21*6 6 2E00
30 RECEIVE=ADR A[0]: SEND=RECEIVE+2 7 2ECO

100 CALL #SEND,SYS 36,E, "HOWDY DOODY" 8
110 IF E: PRINT "SEND ERROR": STOP 9 0004
120 CALL #RECEIVE,T,$L[O] 10 0008

130 IF T<0 1
140 THEN PRINT "NO MESSAGE" 12 0000: 100F

150 ELSE PRINT "TASK",T," = *,$L[0] 13

160 GOTO 100 14 0002: C148B
RUN 15 0004: 2E06
TASK O = HOWDY DOODY 16 0006: O6A5
TASK 0 = HOWDY DOODY 17 000A: C1C2
TASK 0 = HOWDY DOODY 18 000C: 04F7
TASK 0 = HOWDY DOODY 19 000OE: 0407
20 0010: 0BAS
ESCAPE AT 160 21 0014: 1313
22 0016: CO06

- 23 0018: CO042
24 001A: 2FDE
25 001C: C5CO
26 001E: 0455
27
28 0020: C148B
29 0022: 06A5
30 0026: C182
31 0028: 04F6
32 002A: 0716
33 002C: 06AS
34 0030: 1206
35 0032: C042
36 0034: 2FCB
37 0036: 1601
38 0038: C580
39
40 003A: 0455
41
42 003C: 2ED2
43 003E: 2ED3
44 0040:

0004

0008

0004

0008

0000*

* SEND AND RECEIVE TASK MESSAGES

SEND=2,E, "HOWDY DOODY"
RECEIVE=T,$L[0]

* X X *»

DXOP EVFIX,8 ;EVALUATE & FIX
ERROR EQU >2ECO ;ERROR

L3
EV EQU 4 JEVALUATE ADDRESS
ED EQU 8 ~;EVALUATE STRING

x

RECV JMP RECV2

SEND MOV R11,R6 ;SAVE RETURN
EVFIX R6 ,GET DEST TASK #
BL JEV(5) ,GET ERROR VAR

MOV R2,R7
CLR *R7+ JCLEAR 1ST HORD
CLR *R? ,DEFAULT=NO ERROR

BL 3ED(5) ;GET STRING
JEQ ERR18 ;EXPECTING STRING
MOV R6,RO ;TASK #

MOV R2,R1
XSTH ;SEND TASK MESS
MOV RO,*R7 ;RETURN ERROR

B *R5 ;RETURN

x
RECVZ MOV R11,R6 ;SAVE RETURN

BL JEV(5) JGET VAR ADDR
MOV RZ,R6 ,SAVE ADDRESS
CLR *R6+ ,CLEAR 1ST WORD
SETO *R6 ,DEFAULT=NO MESS
BL JED(5) ,GET STRING
JLE ERR18 ;NONE OR STRING
MOV R2,R1 ,BUFFER ADDRESS
XGTM JGET TASK MESSAGE
JNE RECV4 ;NO MESSAGE
MOV RO,*R6 ;RETURN TASK #
x
RECV4 B *R5 JRETURN

L3

ERR18 DATA ERROR+18 ;EXPECTING STRING
ERR19 DATA ERROR+18 ;EXPECTING STR-VAR
END RECV

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-11

-

10.11 Statement: CLEAR

Format: CLEAR

Definition: Clear currently defined BASIC variables LIST
10 DIM B[6]: B[3]=12: A=72
20 $C="ABCD" :

The CLEAR statement clears all BASIC veriables, stecks, and 30 PRINT A,B[3],$C

loop returns. This excludes the COM and MAIL arrays. 40 CLEAR
s 50 PRINT "A=";A
60 PRINT "B=";B
70 PRINT “$C=";$C
RUN . .
72 12 ABCD
=0 .
= 0
$C=

STOP AT 70

10.12 Statement: CLOSE .

c’*

\

Format: CLOSE <exp>
Definition: Close PDOS file by FILEID LIST
10 OPEN "TEMP" ,F
20 PRINT "DISK/FILE SLOT=";F

The CLOSE statement closes the file specified by FILEID, 30 REM
<exp>. The FILEID 1is generated by the PDOS system on all 40 REM
file open statements and is used to subsequently reference 50 BINARY 1,F,1;3,C
the file. 60 CLOSE F
RUN
1f the file was opened for sequential access (OPEN or DISK/FILE = 288
GOPEN) and the file was updated, then the END-OF-FILE marker
is set at the current file pointer. STOP AT 60

1f the file was opened for random (ROPEN) or shared (SOPEN)
access , then the END-OF-FILE marker is updated only if the
file was extended -- that is, if data was written after the
current END-OF-FILE marker.

The date of last update is adjusted in the disk directory
only if the file has been altered.

A1l files must be closed after being opened! - Otherwise, CLOSE ALL FILES!
directory information is lost and possibly the file also.

Sonfnsass Sxszosssszsonskrzssssssssssaszssos

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-12

=
10.13 Variable: COM
Format: COM[<exp>]
Definition: Common array not destroyed by NEW LIST
or RUN 10 DIM ARRAY[2]
20 FOR 1=0 TO 2
" The COM vaeriable (referred to as the COMMON ARRAY) is a 30 ARRAY[I]=I+1: COM[I]}=1+1

single dimensioned array which 1is used to preserve data 40 PRINT ARRAY[I1],COM[1]
during RUN, NEW, and program chaining. COM is initially 60 NEXT I
dimensioned for ten elements, COM[0] through COM[9]. 60 STOP

RUN
The size of the COM array is changed by assigning a new 1 1
limit to SYS[8] and then executing a CLEAR or RUN statement. 2 2
The nen size remains until BASIC is executed again. 3 3
The COM array is used to pass and return parameters from STOP AT 60
assembly language subroutines. HWhen a CALL is made to a 30
subroutine, register R? contains the address of COM[0]. LIST

10 DIM ARRAY[2]
See 10.10 CALL. 20 FOR I=0 TO 2

40 PRINT ARRAY[1],COM[1]

50 NEXT 1

60 STOP

RUN

0 1

0 2

0 3

STOP AT 60

;5Y5(8); 10
SIZE
PRGM:0
VNAM:0
VARS:0
FREE:31706
COM(9)=0
COM(10)=0
*ERROR 7
SY5(8)=20
CLEAR
SIZE
PRGM:0
VNAM:0
VARS:60
FREE:31646
COM(19)=0
COM(20)=0
*ERROR 7

6@"

o e v

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-13
10.14 Function: COS
Format: COS <exp>
Definition: Returns cosine of radian <exp) LIST '
o B 10 INPUT “"ANGLE = ";A
20 PRINT "COSINE OF";A;" DEGREES =";
The COS function returns the cosine of the angle <(exp’, 30 PRINT COS[A*0.0174533]
where <(exp> is given in radians. One radian = approximately 40 PRINT "COSINE OF";A;" RADIANS =";
57.29578 degrees (180/3.14159265). 50 PRINT COS[A]
60 GOTO 10
The cosine is defined as the ratio of the length of the RUN
side adjacent to the angle <exp> to the length of the ANGLE = 1
hypotenuse, in a right triangle. COSINE OF 1 DEGREES = 0.9998477
COSINE OF 1 RADIANS = 0.54030231
ANGLE = 3.14159265
COSINE OF 3.1415926 DEGREES = 0.99848715

10.15a Function: CRB

Format: CRB <exp?
Definition: Returns CRU bit value of <exp> beyond BASE

The CRB function returns the valie of a CRU bit displaced
from the CRU base by <exp>.

See also 10.6 BASE.

10.15b Statement: CRB

Format: CRB[<exp1>]=<exp2>
Definition: Loads CRU bit <exp1> beyond BASE wWith
the Boolean value of (exp2)

The CRB statement executes a Set Bit Zero (SBZ) or Set Bit
One (SBO), depending upon the Boolean value of (exp2>. The
CRU bit affected is located at a displacement of <exp1> bits
beyond the CRU base. The range of <exp1> is -128 to 127.

See also 10.6 BASE.

COSINE OF 3.1415926 RADIANS

-1

ANGLE =

LIST
100
110
120

LIST
100
110
120

" REM CHECK FOR AUX DSR
BASE 00180H
IF CRB[27]: PRINT “NO AUX DSR"

REM RESET AUX 9902
BASE 007180H
CRB[31]=1

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY : PAGE 10-14

10.16a Function: CRF

Format: CRF <exp?

Definition: Return multiple CRU value of <exp> bits LIST
beyond BASE 100 REM READ 12 BIT A/D VALUE
, 110 BASE 00500H
" The CRF function returns up to 16 bits of CRU data 120 PRINT “A/D VALUE =";CRF[12]

beginning at the BASE CRU address. (exp> specifies how many
bits are to be read. The range of <exp> is 0 to 15, where 0
reads 16 bits.

See also 10.6 BASE.

10.16b Statement: CRF

Format: CRF[<exp1>]=<exp2)

Definition: Load multiple CRU value <exp2) into LIST

<(exp1> bits at CRU BASE 100 REM SET AUX BAUD TO 600

110 BASE 00180H

The CRF statement outputs up to 16 bits of CRU data 120 CRB[31]=1 !RESET 9902
beginning at the BASE CRU address. <exp1> specifies how 130 CRF[8]=00062H !SET CONTROL REGISTER
many bits are to be written. The range of <exp1> is 0 to 140 CRB[13]=0 !FORGET INTERVAL TIMER
15, where O writes 16 bits. <exp2) is fixed to an integer. 150 CRB([12)=832 !SELECT 600 BAUD

The lower 8 bits are output if <exp1> ranges from 1 to 8.

See also 10.6 BASE.

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-15

10,17 Statement: DATA

Format: DATA <exp>,...,(string>,...
Definition: Program data statements R LIST
100 DIM A[10]
‘ . . C e i 110 READ I,$A[0]
A DATA statement contains data which is accessed by & READ 120 1IF $A[O0]="END": STOP
statement. The items in the DATA statement are separated by 130 PRINT I,$A[0]
commas and may include any expressions or strings. String 140 GOTO 110
literals are enclosed in single or double quotes. . 200 DATA 1,"ONE",2,"THO",3,"THREE"
..+ 210 DATA 4,°FOUR",5,6"FIVE",B,"SIX"
See 10.76 READ and 10.80 RESTORE ; 220 DATA O, "END*
RUN PRI
1 ONE
2 - THO® ! P
-3 THREE :
4 - FOUR -
5 FIVE
6 SIX
STOP AT 120
10.18 statement: DATE
~
Format: DATE
DATE <exp1>,<exp2’,<exp3>
DATE <¢string-var>
Definition: Read or set system date DATE
10/28/80
DATE 10,29,80
The DATE statement reads, sets, or displays the system DATE $A[O0]
date. ;$A[0];10/29/80

DATE without any parameters displays to the user console an
eight character string.

I1f the perameter of DATE is a string variasble, then the
same eight character string plus a null character is stored
in the variable.

1f expression <exp1> follows the DATE statement, it is
evaluated and used to set the month of the system clock. A
subsequent expression, (exp2), sets the day, followed by an
expression <exp3), to set the year.

o .
SEsz2EsIagssssEs

o o e e o e e e e

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-16
10.19 Statement: DEFINE
Format: DEFINE <string> {,<exp>}
Definition: Enter a file name in PDOS directory DEFINE "FILE;10"
FILES 10
DISK NAME=DISK #1/0 FILE
" The DEFINE statement creates in the disk directory a new LEV NAME:EXT TYPE SIZE DATE CREATED LAST
file entry, as specified by <string>. A PDOS file name ‘
congists of an alpha character followed by up to 7 10 FILE EX 0/1 05:25 10/29/80 05:23
additional characters. An optional extension of up to 3 *READY

characters can be added if preceded by a colon. Likenise,
the directory level and disk number are optionally specified
by a semicolon and slash respectively.

1f an expression follows the file name, then a contiguous
file is allocated with 1length of <exp> sectors. This
computes to 252 times <exp> bytes of data.

A contiguous file facilitates random access to file data
since PDOS can directly position to any byte within the file
Without having to follow sector links. However, a
contiguous file is changed to a non-contiguous file if it is
extended past its initial allocation.

PDOOS 2.4 DOCUMENTATION

CHAPTER 10 PDOS BASIC COMMAND SUMMARY

PAGE 10-17

10.20 Statement: DEFN

DEFN FN<sim-var> {[¢sim-var>,.
Define a BASIC user runtime function

Format:
Definition:

PR

The DEFN statement allows the user to define new functions

which are used the same as any intrinsic function. A user
function is made up of either a single BASIC statenent or a
multiple set of BASIC statements. o

The user function name consists of the letters FN’

followed by eny s1mp1e veriable name. (This name is-a new
An optional parsmeter -1ist may-

entry in the*symbol tab1e)
be included in the function definition. These parameters
are referred to as dummy variables (local to the function
definition) and must be enclosed in parentheses or brackets.

Single line user functions require an equal sign after the
parameter list, followed by an arithmetic expression. Dummy
perameters or any other global variable can be used in this
expression. The function returns the result of the
evaluated expression.

Multiple line user functions do not follow the parameter
list with an equal sign. A1l program lines following the
DEFN header, up to the first program line to begin wWith a
FNEND statement, constitute the body of the function. Dummy
variables are local to the body of a function. Additional
local variables are declared with the LOCAL statement.

The value of the function is returned by assigning an
expression to the function neme. If no assignment is made
Within the body of the function, a zero is returned.

The function body need not be executed to be defined for
progrem use. The RUN and CLEAR statements search and define
all user functions before' beg1nn1ng executvon

1f a function definition is - encountered during execution,
the body of the function is skipped and no statements is
executed until after the first program line with the FNEND
statement is found.

See 10.34 FNEND and 10.55 LOCAL.

) = (exp) 7

LIST
100
110
120
130
140
150
160
170

500

© 510

520
530
540

550 -

560
570
580
530
RUN

INPUT "DISTANCE=";X

INPUT "MUZZLE VELOCITY=",V
T=FNS[0,ATN 1] E

IF T<0: GOTO 100

PRINT "ELEVATION IS";T*180/3. 1415926
PRINT " DEGREES"

PRINT X/(COS[T]*V)," SECONDS OF FLIGHT
GOTO 100

DEFN FNA[A]=-8.8*X/(V*COS[A])+2*V*SIN[A]
DEFN FNS[E1,E2]
FOR I=1°T0 20
1I=(E14E2)/2: FNS=1I
IF FNA[IIJ*FNA[E1]¢=0: E2=I1I1: GOTO 580
IF FNA[IIJ*FNA[E2]>0

THEN PRINT "NO SOLUTION": FNS=-1: FNEND

ELSE E1=11
NEXT 1
FNEND

DISTANCE=88167

MUZZLE VELOCITY=1000

ELEVATION IS 29.88646 DEGREES
101.69034 SECONDS OF FLIGHT

DISTANCE=102040

MUZZLE VELOCITY=1000

ELEVATION IS 44.885373 DEGREES -
144.01851 SECONDS' GF FLIGHT

DISTANCE=100

MUZZLE VELOCITY=1

NO SBLUTION

DISTANCE=

-

andmes

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY

10.21 Statement: DELETE

Format: DELETE <string’
Definition: Delete a file from a PDOS disk

" The DELETE statement removes from the disk directory, the
file specified by <string>. A1l sectors associated with
that file are also returned to the disk FREE space for use
by other files on the same disk. A file cannot be deleted
if it is delete or write protected. These protection flags
must be cleared by a PDOS set file attributes commend before
the file can be deleted.

Since a8 bit map is maintained by PDOS for each sector, the
deletion of files results in no loss of room on the disk nor
is a disk compaction routine required to recover lost disk
space. However, frequent file deletions and definitions
creates small groups of contiguous sectors which tend to
fracture files and meke the creation of contiguous files
impossible. This problem is easily remedied by periodically
transferring all files to a newly initialized disk which
would then allocete sectors sequentially for each file
copied.

10.22 Statement: DIM

Format: DIM <dim-var>,...
Definition: Declare and allocate dimensioned variables

The DIM (DIMension) statement is used to define and
allocate elements of a numeric or string array. An array
can have up to 7 dimensions. Zero is always the first
element of each dimension of any array.

Storage order has the right most dimension running the
fastest. In other words, A[1,2] is stored as follows:

A[0,0] A[0,1] A[D,2] A[1,0] A[1,1] A[1,2]
An array dimensioned only once. Any attempt to reconfigure

the dimension structure of an array is ignored or results in
an error.

STTETTTTTTTTTRSEINTIS

PAGE 10-18
ss=szzssssssspossessssssss
-
OEFINE "FILE;10"
FILES 10
DISK NAME=DISK #1/0 FILE
LEV NAME:EXT TYPE SIZE DATE CREATED LAST
10 FILE EX 0/1 05:25 10/29/60 05:23
» "READY
DELETE “FILE"
FILES 10
DISK NAME=DISK #1/0 FILE
LEV NAME:EXT TYPE SIZE DATE CREATED LAST
*READY
~
L1ST
10 DIM A[3,4,2]
20 FOR K=1 TO 2: FOR I=1 T0O 3: FOR J=1 710 4
30 AlI,J,K]=1
40 NEXT J: NEXT I: NEXT K
50 FOR K=1 TO 2: FOR I=1 TO 3: FOR J=1 TO 4
60 PRINT A[I,J,K];
70 NEXT J: PRINT: NEXT I: PRINT: NEXT K
RUN
1111
2222
3333
1111
2222
3333
STOP AT 90 ‘-.ﬂ

-

PDOS 2.4'DOéUHENTAT10N CHAPTER 10 PDOS. BASIC COMHAND SUMMARY

PAGE 10-19

10.23 Statement: DISPLAY

Format: DISPLAY <¢string>
Definition: ‘ List a_PDOS file to console terminal

The DISPLAY statement displays on "the user console, the
disk file specified by <string>. The output is interrupted
With the <escape> key. Since-the output -goes through the
console routines, only TABs are expanded. Thus, files
without line feeds print on one line.

DISPLAY is especially useful for displaying 'user screens
that are stored on disk rather than in program memory.
DISPLAY does a read only open; hence, other tasks may also
be displaying the same file at the same time.

10.24 Statement: ELSE

Format: ° ELSE.(statement>
Definition: A FALSE precondition to a line execution

The ELSE statement precedes any BASIC statement and
continues execution of the program line only if the ELSE
FLAG is FALSE. The ELSE FLAG is set FALSE whenever an IF
statement - is executed.’ If the IF statement evaluates true,
the ELSE FLAG is set true. The flag remains .. set or reset
until another IF statement 1is executed. Hence, multiple
line blocks can be executed or ignored, depending upon what
the IF evaluation returns.

During a LIST or LISTRP, the ELSE statement is indented by
two blanks.

LIST ,
100 DISPLAY “SCRN1"
110 INPUT 3[20,10];$NAMO]

LIST
100 INPUT "A=";A," B=":B
110 IF A<B
120 THEN PRINT "“CONDITION TRUE"
130 THEN PRINT A;" IS LESS THAN";B
140 ELSE PRINT "CONDITION FALSE"
150 ELSE PRINT A;" IS NOT LESS THAN";B
160 GOTO 100

RUN

A=10 B=10

CONDITION FALSE
10 IS NOT LESS THAN 10

A=1 B=2

CONDITION TRUE
1 IS LESS THAN 2

A=

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-20
sezos

10.25 Statement: EQUATE

Format: EQUATE <sim-var>,<dim-var> (;...)} LIST
<single dim-var>, <exp’ {;...} 100 DIM REC1[20] :
Definition: Assign simple veriables to dimensioned 110 EQUATE NAME,REC1[0] ;PHONE ,REC1[10]
variable entries 120 INPUT "NAME=";$NAME
: 130 INPUT “PHONE=";PHONE
The EQUATE statement is used to equate simple variables to 140 PRINT $REC1[0]
dimensioned variable elements. This makes dimensioned 150 PRINT REC1{10]
variable record elements more meaningful and reduces program coes
storage. RUN
NAME=JOHN DOE
The EQUATE statement is also used in passing arrays to PHONE=2242483
functions. 1f the first parameter is a singly dimensioned JOHN DOE
array With index 0, then the expression <exp) is used as the 2242483
srray base address. The array name takes on the same array
attributes as the passed parameter. LIST
10 DIM A[2,2]
20 CALL FNFILL[A[0,0],10]: GOSUB PRINT
30 CALL FNTRANS[A[0,0],2]: GOSUB PRINT
40 STOP

500 LABEL PRINT

510 PRINT : FOR 1=0 TO 2

520 PRINT #* 980*;A[1,0];A(L,1);A[1,2]
530 NEXT I

540 RETURN

1000 DEFN FNTRANS[A,D]

1010 EQUATE T[0],ADR[A]-8

1020 FOR 1=0 TO D: FOR J=I TO D

030 T=T(I,J]: T{1,J1=T{J,1: T(J,I)=T
1040 NEXT J: NEXT I

1050 FNEND

2000 DEFN FNFILL[A,R]
2010 EQUATE T[0],ADR[A]-8

2020 FOR 1=0 TO 2: FOR J=0 70 2
2030 T[I,J]=INT[RND*R]

2040 NEXT J: NEXT I

2050 FNEND

RUN

w
w

-
N
-

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-21

10.26 Statement: ERROR

Format: ERROR <exp>

Definition: BASIC error trap routine at line (exp’ LIST
100 REM GET LARGE AND SMALL #
) 110 ERROR 150
The ERROR statement designates a program line to which all 120 I1=10
execution errors trap. The transfer is done with the GOSUB 130 J=1/1: 1=1/10: GOTO 130
routine. If an error occurs, the ERROR statement must be 160 IF SYS[1]=28: PRINT "DIVISION BY ZERO"
executed again for error trapping to continue. SYS[1] is 160 IF SYS[1]=29: PRINT "OVERFLOW"
set to the last error number, while SYS[2] contains the last 170 PRINT " AT LINE";SYS[Z2]
line to have ean error. 180 PRINT "LARGE=";J
180 PRINT "SMALL=";1
RUN
OVERFLOW AT LINE 130
LARGE= 1E75
SMALL= 1E-76
STOP AT 180

10.27 Statement: ESCAPE

Format: ESCAPE !
Definition: Allow the ESC key to break execution LIST
1000 NOESC !NO BREAK ALLOWED UNTIL COMPLETED
1010 FOR 1=1 TO 1000
The ESCAPE statement enables the <(escape) key to break 1020 SAMPLE[1]=MEMW[OE300H]
program execution. ESCAPE has no effect in keyboard mode. 1030 NEXT 1
1040 ESCAPE !ALLOW BREAK AGAIN

i : S oo e e
==

POOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-22

10.28 Statement: EVENT

Format: EVENT <exp’ 100 MAIL[2])=VALUE
Definition: Set or reset event flag bit ~x" 10 EVENT 30 {ISIGNAL MAIL READY
" The EVENT statement sets or resets an event flag bit. The 200 NVAL=MAIL[2]

expression <exp> specifies both the event number and its. - 210 EVENT -30 !SIGNAL MAIL RECEIVED
value. If <exp) is positive, then the event bit is set to

1. 1f <exp> 1is -negative, -the event is reset to 0. A - : : o

hardware event can be simulated with the EVENT statement by -

setting an event of 1 through 15.

See 5.2.14 XSEF - SET EVENT FLAG

10.29 Function: EVF

Format: EVF <exp 100 EVENT 30 !SIGNAL READY
Definition: Test event flag 110 REM WAIT FOR REPLY
120 IF EVF[30]: SHAP : GOTG:110

i

The test event flag .function EVF returns a 0 or 1,
depending upon the value of the event bit specified by
(exp>. The event flag is not altered by the function. The . EEEEA S
event number if given by the expression modulo 128. o ‘

See 5.2.18 XTEF - fEST EVENT FLAG

PDOS 2.4 DOCUMENTATION

CHAPTER 10 PDOS BASIC COMMAND SUMMARY

10.30 Function: EXP

Format: EXP <exp)
Definition: Returns e raised to the <exp) power

The EXP function returns the exponentiation of <exp>. This
is defined as e (2.71828...) raised to the power of <exp’.
The exponential function is the inverse of the LOG function.

10.31 Statement: EXTERNAL

Format: EXTERNAL <sim-var)>=<exp>
Definition: Define external subroutine call

The EXTERNAL statement places an entry in the external
table and defines an external variable. The external
variable <(sim-var) is then used to call the external
subroutine at address <(exp>.

1f ¢sim-var> has already been defined, no entry is made.
Hence, EXTERNAL statements should be executed at the
beginning of the program.

Once the call has been made, all parameters, links, and
register usage are identical to those of the CALL statement.

The external table size defaults to 20 entries. The size
is changed by assigning SYS[34] the new size and then
executing a RUN or CLEAR statement. SYS[35] points to the
external table.

See 10.10 CALL.

LIST

10 FOR I=0.5 TO 2 STEP 0.1

20 PRINT EXP I, TAB EXP[1]*7,"*"
30 NEXT 1
RUN

1.6487213 *

1.8221188 *

2.0137527 »

2.2255409 *

2.4596031 *

2.7182818 x

3.004166 *

3.3201169 *
3.6692967 *
4.0552 x
4.4816891 *
4.9530324 *
5.4739474

6.0496475

6.6858944

7.3890561

STOP AT 30
JEXP(LOG(4.5)), 4.5

100 DIM A[700]: A=ADR A[0]
110 ALOAD “EXCOM",A,700%6
120 EXTERNAL SPEAK=A

122 EXTERNAL COLOR=A+4

124 EXTERNAL MODE=A+8

126 EXTERNAL MOVE=A+12

128 EXTERNAL PATTERN=A+16
130 EXTERNAL PLOT=A+20

132 EXTERNAL SPRITE=A+24
134 EXTERNAL CIRCLE=A+28
136 EXTERNAL SOUND=A+32
138 EXTERNAL ADC=A+36

140 EXTERNAL APU=A+40

160 SOUND=0

200 MODE=4,1;-1

210 SPRITE=0,"0000183C7E7E3C18"
220 COLOR=4

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-24

10.32 Statement: FILE

Format: FILE <exp>...

Definition: Select, read, write, position, lock, LIST
or unlock file 10 SELECT=1 !FILE SELECT
20 HRITE=2 !FILE WRITE
“ The FILE. statement is the primary file 1/0 statement and is 30 REAOF=3 |!FILE READ
used to SELECT, READ, MWRITE, POSITION, LOCK, or UNLOCK a 40 POSITION=4 I[FILE POSITION
file. The first expression selects the FILE commend, and 100 OPEN “8TEMP",F
any additional paremeters follow. Multiple FILE functions 110 FOR I=0 TO 500
can be placed in one statement by using a semicolon to 120 FILE SELECT,FWRITE,I,I*I, I*I*IL
precede the new function. 130 NEXT 1
140 CLOSE F
200 ROPEN "TEMP",F
0) SELECT and LOCK TASK 210 I=INT[RND*500]
220 FILE SELECT,F;POSITION,18,1,0
FILE 0,<exp?>, {<exp2>} 230 FILE READF,J,K,L
i 240 IF I<>J: PRINT “ENTRY";I," READ AS";J;K;L
exp1 = file slot ID 250 PRINT I,J4;K;L
260 GOTO 210
exp2 = number of bytes per veriable. This is RUN
an optional perameter and applies only 362 362 131044 47437928
to variables within one FILE heading. 5 5 25 126
Default is 6 bytes. 326 326 106276 34645976
119 118 14161 1685159
The task remains locked until the entire FILE command is 182 182 33124 6028568
executed. FILE 0 1is used when tWo users are randomly M 11 121 1331
accessing the same file. 484 484 234256 113379300
48 48 2304 110582

1) SELECT FILE

FILE 1,<exp1>,{<exp2>} ROPEN "FILE" ,FILID
FILE 1,FILID

expl = file slot 1D

exp2 = number of bytes per variable. This is
an optional parameter and applies only
to variables Wwithin one FILE heading.
Default is 6 bytes.

2) WRITE TO FILE FILE 2,1,A,N[0],N[1]

FILE 2,<exp)....

exp = A list of variables to be written to
the file.

ppp— z=

PDOS 2.4 DOCUMENTATION

CHAPTER 10 PDOS BASIC COMMAND SUMMARY

(10.33 Statement: FILE continued)

3) READ FROM FILE
FILE 3,¢var>....

var = A list of variables which receive data
read from a file.

4) POSITION FILE
FILE 4,<exp>
exp = A single byte index into a ROPENed
file. This parameter can be larger than
32767.

FILE 4,<exp1>,<exp2),<exp3>

exp1 = record length in bytes
exp2 = record number
exp3 = byte displacement into record

File index = exp1 x exp2 + exp3

*No expression can exceed 32767.

5) WRITE LINE.
FILE 5,(string’....

string = String to be written to the file.
String is delimited by a null character.
A (cerriage return) is not appended to
the end of the string.

6) READ LINE
FILE 6,¢string-var)....

string-var = String veriable into which a line of
characters is read. A line is defined
as a string which is less then 132
characters long and delimited by a
carriage return. The <CR> is replaced
by a null and <LF>'s are dropped.

FILE 7,A,B,N[0O],N[1]

FILE 4,RECN*RECL

FILE 4,4%6,1,0

FILE 5,"HELLO TURKEY"

LIST

10
20
30
40
50

DIM A[20]
OPEN "LIST",F
FILE 1,F;6,$L[0]
PRINT $L[0]
GOTO 30

PDOS 2.4 DOCUMENTATION . CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-26

(10.33 Statement: FILE continued)

FILE 5 is the complement of FILE 6. However, FILE 5 writes
cheracters until a null character is found while, FILE 6
reads until a <carriage return> is found. Hence, if a FILE
5 line 1is to be read by a FILE 6, then a (carriage return)
must first be appended to the line.

7) LOCK FILE
FILE 7,<exp>,<var>

file slot ID
error return variable

<exp>
<var>

The FILE 7 statement prevents access to a shared file by
any other task. The expression <exp)> specifies the file by
FILE ID. The variable <(var) is returned With a zero if the
lock is successful. Otherwise, the error number is
returned. Possible error numbers include:

52 = File not open
59 = Invalid file slot
75 = File locked

LIST
100 DIM A[10]

110 $A[0]="ABCDEFGHIJKLMNOPQRSTUVHXYZ"
120 $CR=%13%0

130 ROPEN "TEMP",F

140 FOR 1=1 70 5

150 FILE 1,F;5,$A[0],$CR
160 NEXT I

170 FILE 1,F;4,0

180 FOR 1=1T0 5

180 FILE 1,F;6,$A[0]

200 PRINT $A[O]

210 NEXT I

220 CLOSE F
RUN

ABCDEFGHIJKMLNOPQRSTUVHXYZ
ABCDEFGHIJKMLNOPQRSTUVKXYZ
ABCDEFGHIJKMLNOPQRSTUVHXYZ
ABCDEFGHLJKMLNOPQRSTUVKHXYZ
ABCDEFGHLJKMLNOPQRSTUVHXYZ
STOP AT 220

LIST

10 SOPEN "DATAF",FILID

20 FILE 7,L0CK FILID,ER: IF ER: GOTO 20
30 FILE 1,FILID;4,0;3,A

40 A=A+

50 FILE 4,0;2,A

60 FILE 8,FILID

PO0S 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY

PAGE 10-27

(10.33 Statement: FILE continued)

8) UNLOCK FILE
FILE 8,<exp>
<exp> = file slot ID

The FILE 8 statement unlocks a 1locked shared file for
access by other tasks.

The FILE 0 and 1 file selection remains valid for all
subsequent READs and WRITEs until another FILE 0 or 1 is
executed. However, the variable size option of the FILE 1
statement is valid only for the FILE statement in which it
was executed. Thus, a FILE 1 command is required wWith a
semicolon specifying another FILE command, in order to use
this optional parameter.

There is no end of file test. An ERROR trep is required to
detect eny file errors.

LIST

10 SOPEN “FILEZ2",F

20 FILE 7,F,E !LOCK FILE
30 REM PROCESS RECORD

90 FILE 8,F !UNLOCK FILE

LIST
10 ERROR 100
20 OPEN "LIST",F
30 FILE 1,F,1;3,C
40 PRINT $C;
50 GOTO 30
100 POP: CLOSE F
110 STOP

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-28

10.33 Command: FILES

FILES <list>
List PDOS directory

Format:
Definition:

‘ The FILES command sends the <list> string to PDOS for
directory file listings. The (list) parameter selects file
type, directory level, and/or disk. The syntax is:

FILES (file type){protection}{level qualifier}{/disk #)

AC Assign Console file
Binary file

PDOS BASIC token file
PDOS BASIC file
T19900 object file
System file

Text file

User defined

{file type} =
BN
BX
EX
0B
sy

L}
up

{protection} = *
*%

Delete protected
Delete and write protected

{level qualifier) = # List all files on level #
@ List all files

{/disk #) = disk number, ranging from 0 to 127
Example:

FILES 9/1

DISK NAME=PAUL #30MD/1 FILES=17/64

LEV NAME:EXT TYPE SIZE DATE CREATED LAST UPDATE

1 SYFILE:SR 7/19 04:00 02/26/81 20:28 02/26/81
1 ASM sy 43/43 09:50 02/27/81 09:51 02/27/81
1 JEDY sy 25/25 09:51 02/27/81 09:51 02/27/81
1 SYFILE 0B 3/4 20:14 02/26/81 20:28 02/26/81
1 PLIST:SR 41/41 15:42 02/27/81 15:42 02/27/81
1 LIST 65/40 12:17 03/01/81 11:22 03/07/81
0 $TTA 1 10:01 03/01/81 10:01 03/01/81
0 $TTAM 171 10:01 03/01/81 10:01 03/01/81
1 0OC 0/1 05:06 02/01/81 05:06 02/01/81
1 LOAD:SR 4/4 05:14 02/01/81 10:02 03/02/81
1 LOAD 0B 2/2 05:14 02/01/81 10:02 03/02/81
1 DFIX SY 2/2 13:03 03/03/81 13:03 03/03/81
1 PRINTS EX 19/22 15:37 03/05/81 04:27 03/06/81
1 NYM 0B 21/21 22:07 03/05/81 22:07 03/05/81
1 BURN302:SR 68/68 22:22 03/05/81 22:23 03/05/81
1 BURN302 08 28/28 22:23 03/05/81 22:24 03/05/81
1 TEMP 5/6 10:47 03/08/81 10:47 03/08/81

*READY

szssssoassssssssssssssossomssss

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-29

- = o o s e e e e e e e e e e e

10.34 Statement: FNEND

Format: FNEND
Definition: End of a user defined function LIST
100 INPUT "REAL=";R;" IMAG=";I
120 PRINT "COMPLEX MODULUS=",FNCMOD[R,1]
The FNEND statement is used to terminate the body of a 130 GOTO 100
multi-line function when it immediately follows the program
line number. It also causes the program to exit from a 500 DEFN FNCMOD[REAL ,IMAG]
function during execution. Hence, the FNEND can appear 510 LOCAL I,J
anywhere within the function body, but at the beginning of a 520 I=ABS REAL: J=ABS IMAG
line, FNEND terminates the function definition. 530 IF I=J: FNCMOD=I*SQR 2: FNEND

540 IF I<J: FNCMOD=J*SQR[T+IXI/(J*J)]: FNEND
550 FNCHOD=I*SQR[1+J%J/ (I*1)]
560 FNEND
RUN
REAL=2 IMAG=2
COMPLEX MODULUS= 2.8284271
REAL=3 IMAG=-4
COMPLEX MODULUS= 5
REAL=

PDOS 2.4 DOCUMENTATION

CHAPTER 10 PDOS BASIC COMMAND SUMMARY

PAGE 10-30 -

10.35 Statement: FOR

Format: FOR <(sim-var>=<exp1> TO <exp2> {STEP <(exp3’}
Definition: Header for a BASIC loop

* The FOR and NEXT statements indicate the start and end of
en instruction block that is to be repeatedly executed. The
<sim-var) is the control variable end is initialized to
<exp1> when the FOR statement is executed. This variable is
incremented (or decremented) by <(exp3> when the
corresponding NEXT statement is executed. If no STEP is
specified, a default step value of 1 is used.

After the control variable has been updated by the NEXT
statement, it is compared with <exp2>. If it is greater
than <exp2> and the STEP value is positive, or if it is less
than <exp2> and the STEP value is negative, then the loop is
terminated and execution continues after the NEXT statement.
Otherwise, execution returns to the FOR statement for
another pass.

A pre-check is made by the FOR statement to see 1if the
termination value has already been achieved. If such is the
case, BASIC searches forward for the corresponding NEXT
statement and the 1loop sequence is not executed. (The
corresponding NEXT statement must be the first statement of
the program line for this to work properly.)

The control variable is often used in the computations
within the instruction block. It may be changed within the
body of the loop and the latest value of the varisble is
used in the exit test.

It is possible for the FOR and NEXT statements to be on the
same program line. However, this type of a loop structure
cannot be interrupted by the escape key. Also, as stated
asbove, use of FOR and NEXT statements on the same line
result in an error if, during the pre-check, the 1loop is
terminated.

FOR loops may be nested. However, they should not use the
same control variable and loops must be complietely contained
within the other. Overlapping is not permitted. Inner
loops run to completion before outer loops. PDOS BASIC
allows up to eight levels of FOR/NEXT nested loops.

LIST

10 FOR I=1 TO 5 STEP-2
20 PRINT I;

30 NEXT I

40 PRINT: PRINT I

“RUN

136
?

STOP AT 40

LIST
10 FOR I=2 T0 -6 STEP -2
20 PRINT I;
30 NEXT 1
40 PRINT: PRINT 1
RUN
20-2-4 -6
-8

STOP AT 40

LIST

10 FOR I=1T0 4

20 FOR J=1 T0 10

30 PRINT #"890";I*J,

40 NEXT J

50 PRINT

60 NEXT I
RUN

3 456 7 891
6 810 12 14 16 18 20
912 15 18 21 24 27 0
12 16 20 24 28 32 36 40

& WN
o o aN

STOP AT 60

PDOOS 2.4 DOCUMENTATION

CHAPTER 10 PDOS BASIC COMMAND SUMMARY

PAGE 10-31

(10.35 Statement: FOR continued)

Program transfers out of the loop are permitted, but
transfers into the loop are not, except for the purpose of
completing an existing loop structure. Of course, a
subroutine call ' is permissible since it returns for proper
loop termination.

Every FOR statement causes the subsequent program
statements to be indented by one character when the program
is LISTed. This is accumulative. The NEXT statement
conversely decrements this indentation count by one.

FOR loops can be nested up to 8 levels deep. You change
this value wWith SYS[14]. Assign the new depth to SYS[14]
and then execute a CLEAR or RUN statement.

LIST

10 FOR I1=1 TO 10
20 FOR I2=1T0 10
30 FOR I3=1 70 10
40 FOR 14=1 7O 10

50 FOR 15=1 TO 10

60 FOR 16=1 T0 10

70 FOR I7=1T0 10

80 FOR 18=1 TO 10

90 FOR 19=1 70 10

100 FOR I10=1 TO 10
110 FOR 111=1 TO 10
120 FOR I112=1 70 10
RUN

*ERROR 11 AT 90
:SYS(14); 8
SYS(14)=12

RUN

STOP AT 120

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-32
====zz=zz=zz= ===z==zz==s=czszsszzszzssozzzzszsszcoxss zz=zszszzszzzszzzzzzszzs

10.36 Statement: FNPOP

Format: FNPOP LIST
Definition: Pop function call from system heap 10 INPUT I
20 PRINT I," FACTORIAL=";FNFACT[1]
30 GOTO 10 . .
: The FNPOP statement pops a function call from the system
heap. Functions must be gracefully exited! Variable 100 DEFN FNFACT[I]
addresses and pointers are stored on the system heap and 110 ERROR FERR
must be restored in an orderly manner. 120 IF I<=1: FNFACT=1: FNEND
130 FNFACT=I*FNFACT[I-1]
140 FNEND
- 200 LABEL FERR

210 POP : PRINT "ERROR"
220 IF SYS[32]: FNPOP : GOTO 220
230 GOTO 10

RUN

76

6 FACTORIAL= 720
7?10

10 FACTORIAL= 3628800

? 50

50 FACTORIAL= 3.0414093E64
? 100

100 FACTORIAL=ERROR

710

10 FACTORIAL= 3628800

? 100

100 FACTORIAL=ERROR

? 80

50 FACTORIAL= 3.0414093E64
?

10.37 Function: FRA -

Format: FRA <exp)

Definition: Returns fractional part of (exp) LIST
10 A=-1
20 FOR I=0 TO 47

The FRA function returns the fractional part of <exp). 30 IF FRA[1/16]=0: PRINT " *;

: 40 PRINT #"0";BIT[A,1+1];

50 NEXT I
RUN
0000000000000000 1111111111111111 G000000000000000
STOP AT 50 '

POOS 2.4 DOCUMENTATION CHAPTER 10 POOS BASIC COMMAND SUMMARY

PAGE 10-33

10.38 Statement: FREE

Format: FREE <exp> i
Definition: - Free or reclaim task memory

The FREE -statement frees or reclaims memory from the
highest memory address of the task. Variable definitions,
~and GOSUB and FOR/NEXT stack addresses, are adjusted
accordingly. If <(exp> is positive, memory is freed. If
<(exp> is negative, memory is reclaimed.

This statement is very useful in creating global data
areas, spaWning new tasks, or passing storage to assembly
language routines.

A BASIC subroutine that uses the FREE statement in spaWning
a nen task is shown below:

2000 REM CREATE TASK
2010 DIM C[5],L[10]

2020 FREE 1024 !FREE 1k

2030 $L[0]="LT.LS 10.KT 0"

2040 COM[OJ=ADR[L[0]] !COMMAND LINE
2060 COM[1]=SYS[28] !LOW ADORESS

2060 COM[2]=5YS[29] !HIGH ADDRESS
2070 COM[3]=1 !TASK TIME

2080 COM[4]=SYS[10] !CRT PORT

2080 $C[0]=%"05C70700C057 COA70012COE?"
2100 $C[2)=%"0018C1270006 C167000C04D7"
2110 $C[4]=1"2FDOCSCOCICO 00060458" -
2120 CALL #ADR CREATE[0] !CREATE TASK
12130 IF COM[O]

2140 THEN PRINT "PDOS ERROR" ;COM[0]
2150 THEN GOTO 2170

2960 ELSE IF TSK[COM[1]]>0: GOTO 2130
2170 FREE -1024 !RECOVER SPACE

2180 RETURN

LIST
100
110

120°

130
140
150
500
510
520
530
540
550
600
610
620
630
640
650
660
670
680
690

DIM L[10]
GOSUB 500

FREE

4096 !FREE 4K

GOSUB 500

FREE
STOP
REST
FOR

-4096 !RECOVER 4K

ORE : PRINT
I1=20 T0 29

READ $L[0]: PRINT TAB 26-LEN L([0];

PRI
NEXT

NT $L[0];"=";#SYS[I]
1

RETURN

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

"BEGINNING USER PROGRAM"
"STATEMENT DEFINITION TABLE"
"VARIABLE NAME TABLE"
"VARIABLE DEFINITION TABLE"
"NEXT VARIABLE DEFINITION"
“NEXT VARIABLE STORAGE®
"GOSUB STACK*"

“FOR/NEXT STACK"

"END USER STORAGE"

"END TASK MEMORY"

BEGINNING USER PROGRAM=82F2
STATEMENT DEFINITION TABLE=644A
VARIABLE NAME TABLE=64A4
VARIABLE DEFINITION TABLE=64B2

NEXT VARIABLE DEFINITION=64BA

NEXT

VARIABLE STORAGE=DES2
GOSUB STACK=DF1E
FOR/NEXT STACK=DF6E
END USER STORAGE=EO0O
END TASK MEMORY=E000

BEGINNING USER PROGRAM=62F2
STATEMENT DEFINITION TABLE=644A
VARIABLE NAME TABLE=64A4
VARIABLE DEFINITION TABLE=64B2

NEXT VARIABLE DEFINITION=64BA

NEXT

VARIABLE STORAGE=CE92
GOSUB STACK=CF1E
FOR/NEXT STACK=CF6E
END USER STORAGE=D000
END TASK MEMORY=EOOO

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-34

10.39 Statement: GLOBAL

Format: GLOBAL <exp1>,{<var>...) LIST {task 0 program)

Definition: Declare common variable storage 100 DIM CM[70] !GLOBAL HWORK AREA
110 MAIL[O]=ADR CM[0] !PASS TO OTHER TASKS
120 GLOBAL MAIL[O],A,B[10],C[10,4],VEL

The GLOBAL statement defines all variables listed after the

first expression <exp1), beginning With the address <exp1>.

This is used in creating a common variable area that can be

shared with other tasks.

LIST {task 1 program}
Veriables are assigned only if previously undimensioned. 100 - IF MAIL[0]=0
Hence, GLOBAL should be one of the first statements in a 110 THEN GOTO 100 !WAIT FOR ADDRESS .
program. Other program tasks should use the exact same - 120 GLOBAL MAIL[0],A,B[10],C[10,4],VEL

GLOBAL statement so that storage allocation is the same.

10.40 statement: GOPEN

Format: GOPEN <string>,<var>
Befinition: Open a PDOS file read only access LIST
10 DIM NAME[10] .
20 . INPUT "FILE NAME=",$NAME[O]

The GOPEN statement opens the file <string?> in read only 30 GOPEN $NAME[O],FILEID

mode for PDOS BASIC file access. The FILE ID is returned in 40 ERROR 100

<var>. Thereafter, the file is referenced by the FILE 1D 50 . COUNT=0 .

and not by name. 60 BINARY 1,FILEID,1;3,1: COUNT=COUNT+1
70 GOTO 60

Since the file cannot be altered, it cannot be extended, 100 POP: RESET

nor is the LAST UPDATE parameter be changed when it is 110 PRINT "FILE LENGTH=";COUNT;" BYTES"

closed. All data transfers are buffered through a channel 120 GOTO 20

buffer. RUN

FILE NAME=PRGH1
FILE LENGTH= 546 BYTES
FILE NAME=_

POOS 2.4 DOCUMENTATION

o o o o0 e o e 0 e

CHAPTER 10 PDOS BASIC COMMAND SUMMARY

PAGE 10-35

10.41 Statement: GOSUB

Format: GOSUB <exp>
Definition: BASIC subroutine call

The GOSUB statement is used to branch out of a program
sequence to a BASIC subroutine. The GOSUB statement pushes
the address of the statement immediately following the GOSUB
statement onto the the GOSUB stack and passes execution to
the 1ine number <exp>.

A RETURN statement is used to exit the subroutine and
resume execution at the first statement following the GOSUB
statement. This pops the top of the GOSUB stack. All
subroutines should exit via a RETURN statement so that the
top address is removed from the GOSUB stack.

Subroutines may be nested up to 20 1levels. The maximum
nesting depth is altered by assigning a new size to SYS[15]
and executing a CLEAR or RUN command.

Executing a RETURN statement when no previous GOSUB
statement has been executed results in an error.

10.42 Statement: GOTO

Format: GOTO <line #
Definition: Unconditional program transfer

The GOTO statement does an unconditional program transfer
to the line number specified by ¢(line #>.

LIST
10 DIM STCK[50]

INPUT “NUMBER=";N;

GOSUB FACTORIAL

PRINT * FACTORIAL=":R

G070 20

8888

100 LABEL FACTORIAL
110 I=0
120 IF N¢=1: R=1: RETURN
130 STCK[I]=N: N=N-1: I=I+1
140 GOSUB 120
150 I=I-1: N=STCK[I1]
160 R=R*N: RETURN
RUN
NUMBER=4 FACTORIAL= 24
NUMBER=10 FACTORIAL= 3628800
NUMBER=20 FACTORIAL= 2.43290ZE18
NUMBER=21
*ERROR 11 AT 140

SYS(15)=40

RUN

NUMBER=20 FACTORIAL= 2.432802E18
NUMBER=21 FACTORIAL= 5.1090942E19
NUMBER=30 FACTORIAL= 2.6525286E32
NUMBER=40 FACTORIAL= 8.1591528E47
NUMBER=41

*ERROR 11 AT 140

LIST
10 INPUT X

20 IF X=0: GOTO 50
30 PRINT "X IS NOT ZERO"
40 GOTO 10
50 PRINT "X 1S ZERQ"
60 GOTO 10

RUN

70

X 1S ZERO

?71

X IS NOT ZERO

?

PDOS 2.4 DOCUMENTATION

CHAPTER 10 PDOS BASIC COMMAND SUMMARY : PAGE 10-36

10.43 statement: IF

Format: IF <logical exp> {: <statement))
Definition: Conditional preprocessor for a command

The IF statement is used to set the ELSE FLAG. At the
beginning of the IF statement, the flag is set FALSE. If
the <logical exp> evaluates true, the flag is set TRUE. The
THEN statement executes on a TRUE flag, while the ELSE
statement executes on a FALSE flag.

Additional statements can follow the IF statement on the
same line and execute on the TRUE condition. These
statements are separated from the ¢logical exp> by a colon.

The ¢logical exp> is any one of the folloWing types:

(exp?

<exp> <relation) <exp’

(string>

(string> <relation> <(string>
<string> <relation> <string> , <(exp?

An <exp> alone evaluates TRUE if nonzero and FALSE if zero.
The same applies to ¢(string> alone.

1f a <string> <relation) <string> is followed by an <exp?,
then the two strings are compared for only <exp) characters.

10.44 Function: INP

Format: INP <exp>
Definition: Returns integer part of <exp)

The INP function returns the integer part of <exp>. It
also guarantees the result to be in integer format. That
is, the first word zero is followed by the 16-bit 2's
complement value.

The range of <exp> is -32767 to 32767. For larger values,
the INT function must be used.

LISsT
10 READ A,B,C
IF C=0: STOP
30 FLAG=0
IF A+B<C: FLAG=1
ELSE IF A+C<B: FLAG=1
60 ELSE IF B+C<A: FLAG=1

70 IF FLAG
80 THEN $Y="NOT "
80 ELSE gy=""

100 PRINT "SIDES";A;B;C;
110 PRINT " ARE *;$Y;"A TRIANGLE"
120 GOTO 10
130 DATA 3,4,5,3,3,9,8,5,1,3,1,0
RUN
SIDES 3 4 6 ARE A TRIANGLE
SIDES 3 3 9 ARE NOT A TRIANGLE
SIDES 8 5 1 ARE NOT A TRIANGLE

STOP AT 20

LIST
10 INPUT "N=";N;
20 PRINT TAB 15;"INP[N]=";INP[N]

30 GOTO 10

RUN

N=10.2 INP[N]= 10
N=-534.345 INP[N]= -534
N=33000.5 INP[N]=
*ERROR 30 AT 20

e € s o o o oo o o o o e

PDOS 2.4 DOCUMENTATION

CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-37

10.45 statement: INPUT

Format: INPUT <input list>
Definition: Input data from console to BASIC variables

The INPUT statement is a very versatile statement that is
used to assign data from the console port to a variable. It
is best be described by single feature explanations and
examples.

1) Numeric variable assignment. A variable in the input
list prompts with a °'? ' and accepts characters up to a
(carriage return>. This string is converted to binary and
stored in the variable. 1f there is an error, the INPUT
statement reprompts with ‘?? ' and attempts the .assignment
again.

2) String veriable assignment. A string variable in the
input 1list prompts with a ‘': ' and accepts up to 80
characters from the console terminal until a <(carriage
return).

3) Prompts. Any string constant found in the input 1list
is echoed to the user console. If the input variable is
preceded by a semiéolon, the default prompt of ‘?' or ':’
and space is suppressed. This enables the prograem to supply
its own prompt.

4) Input maximum. The # operator sets the maximum number
of characters that can be entered on any one variable
assignment. Once the maximum has been set, it applies
throughout the remainder of the input list unless another
value is specified.

LIST

10 INPUT A
20 PRINT A
30 GOTO 10
RUN

? 1234

1234

? 12R¢CRY?? _

LIST

10 DIM NAME[10]

20 INPUT $NAME[O]

30 PRINT """ ,;$NAME[O],"'"“
40 GOTO 20

RUN

: HOWDY PARTNER

'HOWDY PARTNER'

.

LIST
10 DIM D[10]
20 INPUT "N=",N
30 INPUT "N=";N
40 INPUT "DATE=MNDYYR(B><B)<B)¢8><8><8>";$D[0]
RUN
N=? 20
N=30
DATE=MNDYYR

A

LIST

200 INPUT #1;"DONE?",$1
210 IF $1¢>°Y": STOP
RUN

DONE?Y

STOP AT 210

PDOS 2.4 DOCUMENTATION

CHAPTER 10 PDOS BASIC COMMAND SUMMARY

(10.45 INPUT continued)

5) Input exact. The % operator sets an exact number of
characters that must be entered on any one variable
assignment. A (carriage return> is ignored until the exact
number of cheracters has been entered.

6) Error trapping. The ? operator in the input 1list, is
used to specify a 1ine number to which control transfers via
a GOSUB statement 1if non-numeric data is entered where
numeric data is required or control characters are entered
for string inputs. The offending character value is found
in SYS[0], with the line number in SYS[2].

7) Cursor addressing. When the @ operator is followed by
tWo expressions, separated by a comma and enclosed in
parentheses or brackets, each expression is evaluated and
used to position the cursor at the respective X and Y
locations.

8) Screen control. 1f the @ operator is followed by @
string, then certain letters specify control functions. Any
letter may be preceded by a number which repeats the code
that many times. These control letters are altered with the
BFIX utility but are initially defined as follows:

LETTER VALUE DEFINITION

(esc)* CLEAR SCREEN
0B - UP CURSOR

YOA DOWN CURSOR

>0C RIGHT CURSOR

08 LEFT CURSOR

00 BEGINNING OF LINE

»E HOME CURSOR

<esc)Y CLEAR TO END OF SCREEN
<esc>T CLEAR TO END OF LINE
Cesc)’ RESET WRITE PROTECT
(esc’d SET WRITE PROTECT
<esc)) START WRITE PROTECT
<esc>(END WRITE PROTECT
¢esc>+ CLEAR UNPROTECTED

08 SKIP TO NEXT FIELD

Z N~ VDI MWVLIOTC OVDOCO

LIST

10 PRINT "MN/DY/YR<D>",

20 INPUT %2;MN;"/";DY,;"/";¥YR
RUN
MN/DY/YR

A

LIST
10 INPUT ?71000;"ENTER N "N
20 GOTO 10
1000 PRINT: PRINT "ERROR=",SYS[0];" AT",SYS[2]
1010 POP: RETURN
RUN
ENTER N <~C>
ERROR= 3 AT 10
ENTER N

LIST
10 INPUT 9[10,15];N

LIST
10 INPUT @"H10D15R" ;N

PDOS 2.4 ﬂOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-39

10.46 Function: INT

Format: INT <exp>
Definition: Returns greatest integer (floor) of <(exp) LIST
10 INPUT “N=";N;
20 PRINT ,INP[N],INT[N]

The INT function returns the grestest integer less than or 30 GOTO 10

equal to <exp>. For positive numbers, the functions INP and RUN

INT are identical, with the exception that INT has no limit N=2.5 2 2

on 1its range. Negative numbers return the next integer N=-2.5 -2 -3

negative number if any fraction is found. =-10 -10 -10
N=-32000. 123 -32000 -32001

The INT function alWays rounds DOWN to the next lowest N=
WHOLE number. It makes a positive number less positive, and -
makes a negetive number more negative.

o~

4

10.47 Function: KEY

Format: KEY <exp>
Definition: Returns last key value from port <exp’ LIST
10 I=KEY[0]: IF I=0: GOTO 10
20 $I=%1%0: PRINT $I;
The KEY function returns the velue of the last key entered 30 GOTO 10
from a terminal. If <exp> is zero, then the user console RUN
port is sampled. If <exp> is nonzero, then it specifies ABCDEFGHI_

which port to sample.

The value returned reflects the decimal value of the 7-bit
character. If no key has been entered, the function returns
a zero. If a key has been entered, it is removed from the
input buffer and its value returned to the BASIC program.

o e o o o 0 o o o e e e - ey
- o o 0 o o o o -

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-40

10.48 statement: LABEL

Format: LABEL <sim-var) LIST
Definition: Define line number label 100 GOSUB MENU
110 PRINT MENU
120 STOP
The LABEL statement equates a simple variable to the LABEL
statement line number. Thereafter, GOTOs and GOSUBs can 6500 LABEL MENU
reference the line by name rather than just by number. 510 PRINT "I'M HERE!"
520 RETURN
The label variables are defined by the RUN and CLEAR RUN
statements. During a LIST function, LABEL statements are 1'M HERE!
preceded by a blank line. 500
STOP AT 120

10.49 Operator: LAND

Format: <exp1> LAND <exp2> ;1 LAND 201; 1
Definition: Logically 'AND' operands <exp1> and <exp2? ;OFFH LAND 2000; 208

The LAND operator returns the logical °‘AND' of operands
(exp1> and (exp2>. The range of these arguments is plus or
minus 65535, The result is returned in integer format.

10.50 Function: LEN

Format: LEN[¢string>]
Definition: Returns length of ¢string» LIST
10 DIM A[10]
20 INPUT “STRING=";$A[0];
The LEN function returns the number of non-null characters 30 PRINT " LENGTH=",LEN[$A[0]]
in @ string. It begins with the first character and counts 40 GOTO 20
until a null is encountered. RUN

ABCDEFG LENGTH=?
<CR> LENGTH=0
12345676890 LENGTH=10

PDOS 2.4§QOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY . PAGE 10-41
’ : ===== ===== Esssdsezsssssssssosss
fg-\
~ 10.51 Statement: LET
Format: LET <var> = <(exp>
Definition: Variable assignment
The LET statement is the basic assignment instruction of 10 LET I=10
the BASIC language. The word LET is optional. Even though LIST
it might be entered, it does not LIST with the 1line. The 10 1=10
LET statement has 12 different forms. In each example, the DIM A[10]
$A[0] array is first assumed to contain the 26 1letters of $A[0]="ABCDEFGHIJKLMNOPQRSTUVHXYZ"
the alphabet.
1) Numeric assignment. The expression on the right of the <var) = (exp)
equal sign is evaluated and stored in the veriable on the
left of the equal sign. This also applies to the returning PI=4*ATN 1
of a function value by assigning it to the function name ;PI; 3.14159265
without arguments.
2) String asssignment. The string on the right of the (string-ver)> = (string>
equal sign is stored in the string variable on the left of
/™ the equal sign. Hex characters in angle brackets are not $A[0]="ABCOEFGHIJKL"
. expanded. The assignment is terminated by a null character. $I="YES"
If the string variable does not have enough storage ;$A[0] ;$1 ; ABCDEFGHIJUKLYES

reserved to handle the assignment, subsequent veriables are
overwritten. A string holds six times the variable size
minus one. Thus, a simple variable holds only five
characters. An array of ten elements holds 59 characters

(10 x 6 - 1).

3) Character pick. The assignment cen be 1limited by (string-var) = <(string> , (exp’
following the string on the right of the equal sign With a

comma and expression. The expression specifies the number $A[0]="ABCDEFGHIJKLMNOP" ,5

of characters to be assigned to the variable. After the s$A[0] ; ABCDE

assignment is complete, an additional null character is
stored to terminate the string. This assignment ignores all
cheracters, including any nulls, in the source string.

PDOS 2.4 DOCUMENTATION

CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-42

(10.51 LET continued)

4) Replace cheracters. Characters are replaced within a
string by following the string on the right of the equal
sign With a semicolon and an expression. The expression
specifies how many characters are to be replaced in the
string variable on the left of the equal sign. No null
character is written when the transfer is complete.

5) Concatenate strings. Strings are concatenated by means
of the “&" operator. Strings on the right of the equal sign
which are joined by the "&" operator are assigned to the
string variable on the left of the equal sign. BASIC checks
that the source byte is never equal to a previous
destination byte, which would result in a CHOO CHOO effect.
Such a condition terminates the assignment.

6) Delete characters. Characters are deleted from a
string variable by following the equal sign with a back
slash and an expression. The expression specifies hoW many
characters are to be deleted. 1f the expression is zero or
negative, no characters are deleted. The delete command
deletes <exp? characters, or until a null cheracter is
found. -

7) Insert characters. Characters are inserted into a
string by following the equal sign With a backslash and a
string. If the <string> is null, nothing is inserted.

8) Convert number to ASCII. An expression is converted to
a string simply by assigning it to a string variable. The
conversion is format free and uses the current number of
digits in SYS[3]. The string is terminated by a null
character.

9) Convert number to ASCII with format. An expression is
converted to a string using a print format by following the

equal sign with a pound sign, then a string, followed by a

comma and expression. The format string is the seme as used
by the PRINT statement. (See 10.74 PRINT.)

(string-var)> = (string> ; <(exp>

$A[0;5)="....";4
;$A[0] ;ABCD. ... IJKL

(string-var)> = (string> & <string®
$A[0])="ABC"&"DEF"

$A[0]=$A[0]&"..."&"JKL"
J$A[0]; ABCDEF. . .JKL

<string-var> = \ (exp)

$A[0,5]=\4
;$A[0] ; ABCDIJKLMNOPQRSTUVHXYZ

<string-var)> = \ (string

$A[0;2]=\"...."
J$A[0];A. .. .BCDEFGHIJKLMNOPQRSTUVHXYZ

_{string-var) = <(exp)

$A[0]=4*ATN 1
J$A[0]; 3.14159265

<string-var> = # <string> , <exp’

$A[0]=#"1-000-000-0000" 8013752434
,$A[0];1-801-375-2434

¢ PDOS"Z:4 DOCUMENTATION

CHAPTER 10 PDOS BASIC COMMAND SUMMARY

(10.51 LET continued)

10) Convert number to HEX. An expression is converted to
an ASCI1 string of four hex characters by following the
equal sign with a pound sign and expression. The expression
must be in the range of -32767 to 32767. A total of five
characters are stored: four hex characters followed by a
null.

11) Convert byte. Individual bytes may be inserted into a
string by following the equal sign with a percent sign and
expression. The expression should range between 0 and 255
(8-bits). Many of these characters may be chained together
by adding additional percent signs and expressions.

12) Convert byte string. A string of hexadecimal
characters-is “inserted by following the equal sign With a
percent sign and a string. The only non-hexadecimal
character allowed is a blank. Characters must consist of
two hexadecimal characters.

13) Convert ASCII to binary number. An ASCII string is
converted to @ binary number by assigning a string to a
numeric variable. Since the conversion may have an error,
the string is optionally followed by a comme and & variable
to hold the delimiter character. The terminating byte is
stored in the first byte of the variable. Hence, if the
variable equals the null string, the conversion wnas
successful. In any case, as many digits are converted and
stored as possible.

It is possible to chain many of the string assignments
together in one assignment. Those operators allowing such
chaining are %, \, #, and &.

'<string-var> = # <exp>

$A[0]=#-2
J$A[0] ,FFFE

(string-var> = % <exp)

$A[0;2]=%65
;$A[0] ; AACDEF GHIJKLMNOPQRSTUVHXYZ
$A[0]=%65%66%67%0

,$A[0];ABC

<string-var)> = % <(string’

$A[0;2]=%"44 43 42 41 00"
,$A[0] ; ADCBAF

{var> = (string> (,<var’}

$A[0]=4*ATN 1
N=$A[0] ,E
;N; 3.14159265

anng, snon 0
JUUUIESY,

$A[0]="-"%3EH#-243CHg"-"
;$A[0];->FFFEC-
$A[0]=#-0473753H7.328 "DUCK"
;$A[0] ;DAFFY DUCK

PDOS 2.4 DOCUMENTATION

CHAPTER 10 PDOS BASIC COMMAND SUMMARY

PAGE 10-44

10.52 Command: LIST and LISTRP

Format: {¢line #} LIST
{Cline #) LISTRP

Definition: List user program to console

The LIST command outputs to the user console the current
program in memory, in infix order. This is how a program is
normally listed. Remember, a program may not 1list exactly
the same Way it is entered, since the program is changed to
internal pseudo source tokens which are stored in Reverse
Polish order. The LIST routine must then reconstruct en
infix representation of these tokens, inserting parentheses
where necessary to preserve operator precedence. Subscript
perentheses 1ist as brackets, while precedence parentheses
list as parentheses.

The LISTRP command outputs to the user console the current
program in memory in true token storage order. Each token
is separated by a blank. Special characters are generated
to show dimension operators. These are represented by a
lower case 'd’ followed by the number of dimensions. The
LISTRP statement shows the exact order of program execution.

An optional <(line #> can precede the LIST or LISTRP command
to select where in ‘the program the listing is to begin.
There need not be a statement at <line #>, in which case the
listing begins with the next greater 1ine number.

The listing is temporarily interrupted by striking any key
except <(esc>. Striking any key again resumes the listing.
The listing is terminated at any time by the <esc) key.

For every FOR statement, the next statement is indented by
one blank. Every NEXT statement decrements the indentation
by one. The ELSE and THEN statements add two blanks of
indentation.

10 I=A/B+C
20 I=A/(B+C)
LIST

10 I=A/B+C

20 1=A/(B+C)
LISTRP

0 I=AB/C+

20 I=ABC+/

10 A(1,I*10)=B(C(1,2),SQR(V))
20 X=(A*B)*(C*D)
LIST

10 A[1,1*10]=B[C[1,2],SQR[V]]
20 X=A*B*(C*D)
LISTRP

0 1110*%d2A=12d2CVd1SQRd2B

20 X=AB*xXCD*«x

PDOQ 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY

10.53 Operator: LNOT

Format: LNOT <exp>
Definition: Logically complement operand <exp>

The LNOT operator returns the 1logical 1's complement of

<exp1>. The range of the argument is plus or minus 65535.
The result is returned in integer format.

10.54 statement: LOAD

Format: LOAD <string>
Definition: Load program from PDOS file

The LOAD statement loads an ASCII text BASIC program into
the current workspace. If a program already exists, the new
program is merged and overlayed where conflicting line
numbers are found. The LOAD command opens the file using a
read only open, and closes the file when the EOF is found.

If an error occurs during the load, the offending 1line is
printed and the load continues. The LOAD statement can
appear in a program and be used With PURGE for runtime
overlays.

;LNOT OFEH; -255
SLNOT 1; -2

LOAD "PROGRM1"
*READY
LIST
10 PRINT "PROGRAM 4"
20 LOAD "PROGRMZ"
30 GOTO 10
LOAD “PROGRM2"
*READY
LIST
10 PRINT “PROGRAM 2°
20 LOAD "PROGRM1"
30 GOTO 10
RUN
PROGRAM 2
PROGRAM 1
PROGRAM 2

PAGE 10-45

T ——

BT - S 00 S RO

PDOS 2.4_ DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-46
. et °?£ ERPT . . -
10.55 statement: LOCAL
Format: LOCAL <sim-var) {,...)
Definition: Declare a simple variable local to a function LIST

100 INPUT “C1 = (*;R1;",";11;")"
10 INPUT "C2 = (";R2;",*;12;")"
CALL FNCDIV[R1,11,R2,1Z,X,Y]
PRINT "C1/C2=(";X;",";Y;")"
6OTO 100

DEFN FNCDIV[R1,11,R2,12,R,I]
510 LOCAL K1,K2

The LOCAL statement is used Within a function definition to
add simple veriables to the 1local dummy variable list.
Simple variables declared to be local are different from
variables of the same neme outside the body of the function.

8288

Local variables are redefined each time the function call 520 IF I12=R2: IF 12=0: R=1E75: I=1E75: FNEND
is made and dropped when the function is exited. They are 530 IF ABS R2¢ABS 12
stacked during recursion and not affected while other - 540 THEN K1=R2/12: K2=12+K1*R2
functions are called from within a function. 550 THEN R=(RPT1+I1)/K2: I=(11*K1-R1)/K2
560 ELSE K1=12/R2: K2=R2+K1*12
570 ELSE R=(R1+I11%K1)/K2: I=(11~R1*K1)/K2
6580 FNEND
RUN
€1 = (1,0)
€2 = (0,1)
Cc1/€2=(6, -1)
€1 =(2,2)
C2 = (4,-1)

C1/C2=(0.352941176, 0.5688235294)
1= (_ [

SOESSSSRSRTISsIISESRsE ——

PDOS 2.4 DOCUMENTATION

o o e o s

CHAPTER 10 PDOS BASIC COMMAND SUMMARY

e
—————

EeSSrosmnaia

10.56 Punction: LOG

LOG <exp)
Returns natural log of <exp>

Format:
Definition:

The LOG function returns the natural logarithm of <exp>.
The expression must be positive. The base 10 1log is
obtained by multiplying the natural logarithm by 0.434295.

The LOG function is the inverse of the EXP function.
Hence, EXP of the LOG of N returns N.

10.57 Operator: LOR

Format:
Definition:

<exp1> LOR <exp2)
Logically 'OR’' operands <exp1’> and <exp2)

The LOR operator returns the logical 'OR' of arguments
<exp1? ‘and <exp2>. The range of the arguments is plus or
minus 65535 The result is returned in integer format.

LIST

10 FOR I1=0.5 TO 2 STEP 0.1
20 PRINT LOG I; TAB‘LOG[1]*20+30;"*"

30 NEXT I
RUN
-0.693147181
-0.510825624
-0.356674944
~0.223143551
-0.105360516
0
0.0953101798
0.182321557
0.262364264
0.336472237
0.4054651
0.470003629
0.530628251
0.587786665
0.641853886
0.693147181

STOP AT 30

SEXP(LOG(2)) ; 2

x

,08000H LOR 10; -32768
,020H LOR 010H; 48

oo e e o e o e o e

zz=z ss¥zbesozizeidizsazezsszzoszoaszesssszszaseas zz=zsEEsEsIEsEs
_PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY ' PAGE 10-48
====zz==sEsssssissnzsssssesszs e

10.58 oPera.torx LXOR

Format: <exp1> LXOR <exp2>
Definition: Exclusive 'OR' operands <exp1> end (exp2)

The LXOR operatori-returns : the ‘logical exclusive 'OR' of
* arguments <(exp1) and <exp2). The range of the arguments is
plus or minus 65635, The result is returned in integer
format.

10.59 Variable: MAIL

Format: MAIL[<exp?]
Definition: Global array for intertask communication

The MAIL verisble is a global array that cen be referenced
by any other BASIC program or assembly language task. The
erray is a single dimensioned array of ten elements (MAIL[0]

through MAIL[S]). MAIL[0] is located at address »2200 to

Y223F of the PDOS system RAM.

10.60 Function: MCH

Format: MCH[¢string? ¢string2>]
Definition: Returns number of matching characters

The MCH function returns the number of characters in which

¢string?> and <string2) agree. <string1> can have a wWild
card character '*' which always matches.

;022H LOR 042H; 98
;022H LXOR 042H; 96

LIST
100
110
120

LIST
10

88883

MAIL[1]=N !PASS MOVE
MAIL[0]=1 !SIGNAL MOVE READY
IF MAIL[0]=1: GOTO 120 !'WAIT

DIM A[10]

INPUT $A[O] \ _
PRINT “ABCDEFG =" ;MCH["ABCDEFG",$A[0]]
PRINT "AB**EF* =" ;MCH["AB**EF*" $A[0]]
GOTO 20

e i i ——

POOS 2. 4:DBCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-49

SS===Ezzszex == == -

10.61a Function: MEM

Format: MEM <exp>
Definition: Returns byte value of memory location <exp> LIST
10 FOR I=0 TO 99
‘ 20 IF FRA[1/10]=0: PRINT
The MEM function returns the value of memory location 30 $D[O]=#MEM[1]

<exp>. The result is an integer ranging from 0 to 255. 40 PRINT $D[0;3];" ",
50 NEXT 1
RUN

2F DC 00 CC 22 78 22 98 22 6C
22 8C 2F DC 03 98 2F 60 05 9C
2F 60 05 SC 2F 60 05 SC 22 60
22 80 22 54 22 74 22 48 22 68
22 3C 22 B5C 22 30 22 50 22 24
22 44 22 18 22 38 22 OC 22 2C
22 00 22 20 2E 16 17 4A 2E 16
17 3E 2E 16 17 64 2E 16 17 56
2E 16 18 DB 2E 16 19 AA 2E 16
1A 80 2E 16 18 3E 2E 16 4D D6

STOP AT 50
10.61b Statement: MEM
Format: MEM[<exp1> J=<exp2>
Definition: Store byte in memory MEM(02F65H)=0 !CLEAR SECONDS

The MEM statement . stores the byte value of <exp2> in memory
at location <exp1>. The range of <exp2> is from 0 to 255.
A larger value stores only the right most 8 bytes.

B e e E e SR e

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-50
: - == EestszsEsnskastesssss

10.62a Function: MEMW

Format: MEMH <exp>
Definition: Returns word value of memory location <(exp> LIST
10 FOR I=0 TO 99 STEP 2
20 IF FRA[I1/10]=0: PRINT

The MEMH function returns the word value of memory location 30 $D=8MEMH[I]
<exp>. The result is an integer ranging from -32767 TO 40 PRINT ¢D;" *;
32768. 50 NEXT 1

RUN

2FDC 00CC 2278 2298 226C
228C 2FDC 0398 2F60 058C
- 2F60 059C 2F60 059C 2260
2280 2254 2274 2248 2268
223C 225C 2230 2250 2224
2244 2218 2238 220C 222C
2200 2220 2E16 174A 2E16
173E 2E16 1764 2E16 1756
2E16 1808 2E16 19AA 2E16
1A80 2E16 183E 2E16 4DD6

STOP AT 50
10.62b Statement: MEMW
Format: MEMH[<exp1>]=¢exp2)
Definition: Store 16 bit word in memory MEMW[00S0H]=09BAAH !SET CLEAR SCREEN

The MEMH statement stores the 16-bit integer value of
<exp2)> in memory at location <exp1>. The range of <exp2 is
from -32767 to 32767.

_ PDOS, 2.4 BOCUMENTATLON CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-51

10.63a Function: MEMP

Format: MEMP[<exp1>,<exp2?]
Definition: Returns a 6-byte BASIC number from
address <exp1>, page <exp2)>

The MEMP function returns a B8-byte BASIC number from
address <exp1>, page <exp2>. On pages systems, such as
TM380/101MA, <exp1> is an absolute address and <exp2)
selects a extended memory page. <exp1’ ranges from >0000 to
FFFF and <exp2> ranges from 0 to 7.

On memory mapped systems, such as TM890/102, <exp1> 1is a

page displacement end ranges from >0000 to >OFFF. <exp2)
selects a mapped page and ranges from 0 to 64.

10.63b Statement: MEMP

Format: MEMP[<exp1> , ¢exp2>]J=<exp3>
Definition: Store 6-byte BASIC number <exp3>
at address <exp1>, page <exp2)

The MEMP stores a 6-byte BASIC number <exp3> at address
<{exp1>, page <{exp2>. On pages systems, such as TM990/101MA,
<exp1> is an absolute address and <exp2> selects a extended
memory page. <exp1> ranges from >0000 to >FFFF and <exp2>
ranges from 0 to 7.

On memory mepped systems, such as TM990/102, <exp1> is a
page displacement and ranges from >0000 to >OFFF. <exp2)
selects & mapped page and ranges from O to 64.

LIST

10 IF MAIL[0]=0: SKIP -1 !WALT FOR ADDRESS
20 FOR I=0 TO 10

30 PRINT MEMP[MAIL[0],1];

40 NEXT 1

MEMP[0,55]=4%ATN 1

R T

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY
: : ss===sszzsszszos

10.64 Function: NCH

Format: NCH[¢string>)
Definition: Returns numeric value of 1st character of
: <string)

The NCH function returns the numeric value of a character.
The first byte of <string)> is returned as an integer and
ranges from 0 to 265.

10.65 Command: NEW

Format: NEW
Definition: Clear user program and variable space

The NEW command clears the user memory of all progrem code
in preparation for entering or loading a new program. In
eddition, all buffers and stacks are reset, and the
following initialized:

AINC = 10 Auto increment size
COMZ = 10 COM[] array size

DGTS = 8 Format free number size
EXTZ = 20 EXTERNAL table size
FNSS = 8 FOR/NEXT stack size
GSSS = 20 GOSUB stack size

UNIT = 1 Output unit

LIST

10 INPUT #1;$A;

20 PRINT TAB 10, "VALUE=";NCH[$A]
30 GOTO 10

RUN

A VALUE= 65
e VALUE= 42
LIST

10 REM PROGRAM #1
20 I=SIN[1]*SIN[1]+COS[1]*COS[1]
SIZE

PRGM: 46

VNAH:0

VARS:2

FREE:31614

NEW

*READY

SIZE

PRGM:0

VNAM:0

VARS:0

FREE:31662

o ——
s

PDOS- 2.4 DOCUMENTATION CHAPTER 10 POOS BASIC COMMAND SUMMARY PAGE 10-53

r

10.66 Statement: NEXT

Format: NEXT <sim-var)
Definition: Foot of a BASIC loop LIST
: 10 FOR I=1T0 3
20 FOR J=170 2
The NEXT statement mearks the end of & FOR loop. The 30 PRINT 1,J
argument must be a simple varieble and match the veriable 40 NEXT J
name used in the corresponding FOR statement. The NEXT 50 NEXT I
statement adds the STEP value to the veriable, updates it in RUN
memory, and then checks to see if the loop has been 1 1
completed. 1f the condition has not been met, execution 1 2
continues immediately after the FOR statement (which may be 2 1
on the same line). If the condition is met, execution 2 2
continues with the next statement after the NEXT. 3 1
3 2
For a pre-test to work, the NEXT statement must be the
first wWord on a program line. STOP AT 50
During a LIST or LISTRP command, each NEXT statement
decrements the line indentation by one.
(p’!
10.67 Statement: NOESC
Format: NOESC
Definition: Disable ESC key for break function LIST
10 NOESC
20 FOR I=1 TO 1920
The NOESC statement disables the <esc> key for breaking 30 PRINT "N";
program execution. The <esc) key is again allowed when an 40 NEXT 1
ESCAPE statement is executed or the program returns to 50 ESCAPE
keyboard mode. 60 FOR I=1 TO 1920
PRINT “Y*;
NOESC has no effect in keyboard mode. Since at least one 80 NEXT 1
statement is executed after a RUN, a NOESC statement is RUN
guaranteed to be executed, thus protecting any program from
operator breaks. (The program fills the screen With

N's Without operator interruption. Only
after the Y's appear cen the operator
break execution with the <esc> key.)

PDOS 2.4 DOCUMENTATION CHAPTER 10 POOS BASIC COMMAND SUMMARY

PAGE. 10-54

e T e e e e e T P P P P P T PP P L P) e deam i

10.68 Operator: NOT

Format: NOT <exp)
Definition: Returns TRUE if <exp)=0, else FALSE

The Boolean operator NOT returns TRUE (1) when the
expression is zero and FALSE (0) when the expression is
nonzero.

10.69 Statement: ON

Format: ON <exp> : GOTO <line #,...
ON <exp> : GOSUB <line #,...
ON <exp) : <var) = <(exp1),{exp2’,...

Definition: Case statement for GOTO, GOSUB, and LET

The ON statement selects a line number for a GOTO or GOSUB
fron a list of 1line numbers separated by commas. Or, a
vaeriable is assigned a value from a list of expressions
separated by commas. The expression <exp> is integerized
and the velue used to select the appropriate parameter.

1f the expression is out of range (less than one or greater
than the number of expressions in the 1ist), the program
continues With the next statement.

YES

A=6: B=0: C=0

IF NOT A+B-0: PRINT “NO"
ELSE PRINT "YES"

IF NOT C: PRINT "CORRECT"
PRINT NOT C

CORRECT

STOP AT 60

LIST

10
20
30
40
50

INPUT I;

ON I: J=4,3,2,1

ON I: GOTO 100,200,300
PRINT ,"LINE 30"

GOTO 10

100 PRINT ,"LINE 100",J: GOTO 10
200 PRINT ,"LINE 200",J: GOTO 10
300 PRINT ,“LINE 300",J: GOTO 10

RUN
71
73

70
?

LINE 100 4
LINE 300 2
LINE 30

SEESRRTRuSENESsssTsSE=ss

f—— =

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-55

e

EsmEsRERnsRsssssTSToTSsT

10.70 Sstatement: OPEN

Format: OPEN <string>,<var>
Definition: Open a PDOS file for sequential access

The OPEN statement opens a file for sequential access and
returns the FILE ID in <var). The file name, optional
extension, and optional disk number are included in the
string. :

The FILE ID is used for all subsequent file references.

10.71 Operator: OR

Format: . <exp1> OR <exp2>
Definition: Returns TRUE if <(exp1> or <(exp2) is
nonzero

The Boolean operator OR evaluates TRUE (1) if either or
both <exp1> and <exp2> evaluate nonzero. OR returns FALSE
(0) only when both <exp1> and <exp1> are zero. Note: <exp1>
and <exp2> cannot be strings.

LIST
10 OPEN "FILE/1" ,FILID
20 BINARY 1,FILID,3,1,J,K

LIST

10 A=1: B=2: C=0

20 IF ACB OR C: PRINT "A¢B"

30 IF A>B OR C=1: PRINT “AYB OR €=1"
RUN

A<B

STOP AT 30

- o o e o i s

SensstssrasIssss

PDOS 2.4 DOCUMENTATION

CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE '10-56

SnmrEresssstistes

10.72 Statement: PDOS

Format: PDOS <var»),(list)
Definition: Read parameter for PDOS command 1ist

The PDOS statement is used to retrieve parameters from a
PDOS command 1ist. <var> is loaded wWith the number of
parameters returned. The PDOS (1ist) consists of veariables
or string veriables separated by commas.

It a variable is found, the parameter is evaluated, fixed,
and stored in the variable. The range is from -32767 to
32767.

It a string variable is found, the complete parameter is
returned as a string.

10.73 statemeriti ov

Format: POP
Definition: Remove an entry from the GOSUB stack

The POP statement removes the 1last GOSUB return address
from the GOSUB stack.

A GOSUB, ERROR, or INPUT ‘?‘ operator places a return
address on the GOSUB stack. The RETURN statement pops the
top entry and uses it to continue execution after the call.
The POP statement is similar to a RETURN except that it does
not do a transfer.

POP is particularly useful when exiting from a subroutine
to multiple places. It also is necessary when acknoWledging
errors.

LIST
10 PDOS N,I
20 IF N=0: BYE
30 PRINT 1;" FACTORIAL =*;FNFACT{1}
40 GOTO 10
100 DEFN FNFACT[N]
110 IF N¢=1: FNFACT=1: FNEND
120 FNFACT=N*ENFACT[N-1]
130 FNEND
DEFINE "FACT"
SAVE “FACT"
*READY
BYE
.FACT 2,4,6,8,10,20
2 FACTORIAL = 2
4 FACTORIAL = 24
6 FACTORIAL = 720
8 FACTORIAL = 40320
10 FACTORIAL = 3268800
20 FACTORIAL = 2.432902E18

LIST
10 ERROR 1000
20 DIM A[10]
30 INPUT "NAME=";$A[0]
40 OPEN $A[0],F
50 STOP
1000 POP
1010 IF SYS[1]=50
1020 THEN PRINT "INVALID FILE NAME®: GOTO 10
1030 STOP
RUN
NAME=8FILE
INVALID FILE NAME
NAME=_

f*

PDOS ZLRF'MC!_.MENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY

PAGE 10-57

10.74 statement: PRINT

Format: PRINT <print list>
Definition: Output data to user console

The PRINT statement outputs to the user console, in ASCII
format, any string or expression found in the ¢(print list>.
Output is directed to the terminal or file, depending upon
the UNIT and SPOOL instructions. :

The PRINT statement is very versatile and is explained wWith
examples. PRINT items must be separated by at least a

semicolon delimiter. Other valid delimiters are TAB and -

1f a semicolon is the first character of a statement, it is
changed to a PRINT command.

1) Strings. A string constent or string veriable is
printed when found in the perameter 1ist. The string is
examined for any ASCII literals which are delimited by angle
brackets (e.g. <OA>).

2) Expressions. Any expression found in the print list is
printed in format-free form (unless a format has been
specified by the “#" operator). In format-free form, a
space always precedes . the number and if necessary, the
output changes to scientific notation 1in order to
accommodate numbers too small or too large.

3) Suppress <(carriage return). A semi-colon at the end of
a PRINT statement suppresses the <(carriage return)> and <line
feed>. (A TAB or comma at the end of a PRINT statement does
the same.)

4) Print zones. The print columns 16, 32, 48, 64,
are defined as print zones. Hhen a comma is found in the
print 1ist, spaces are output until the next zone is
reached. If the comma is the 1last item of the PRINT
statement, a <carriage return) is suppressed.

PRINT <string’

$I=”N0”

J"THE ANSHER IS ";$1,THE ANSHER IS NO
PRINT <exp?

;4*ATN 1; 3.14159265

PRINT <exp?;

;"HELLO" ;HELLO
;"HELLO"HELLO

PRINT <exp?,

:1,2,3; 1 2 3
'.IIAII’IIB"’HCII;A B) C

" =zz=z== SESSESCTEERSRSSSESSSSSESS IESESSSTRESS

PDOS 2.4 DOCUMENTATION . . CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-58

S=S===R=xn=z

(10.74 PRINT continued)

5) TAB function. The TAB function evaluates and fixes
<exp> and outputs spaces or back spaces until it agrees with
the system column counter (>18E(9)). If the TAB is the last
item of the PRINT statement, a (CR> is suppressed.

6) Cursor addressing. When the "9" operator is followed
by two expressions, separated by a comma and enclosed in
parentheses or brackets, each expression is evaluated and
used to position the cursor at the respective X and Y
position. Position 3[0,0] is defined as the home position.

?) Print hex number. 1f an expression is preceded by a
pound sign, then the fixed number is printed as a four
character hexadecimal number.

PRINT TAB <exp>

LIST

10 FOR I=1 70 10

20 PRINT TAB 1+2/4;"*"
30 NEXT 1
RUN

% »

STOP AT 30

PRINT 3[<¢exp1>,<exp2>]

LIST

10 PRINT 3°c"

20 FOR I=1T0 8

30 FOR J=1 T0 2*1-1

40 PRINT 3[1,20-I+J];"*"
50 NEXT J

60 NEXT I

RUN

(screen clears)

Aok
sk
AR RKK
RANOKARRANOK

Ak soRkRRIOK KK
RemakARAOKIHRIA KRR

STOP AT 50

;100; 100
,$100,0064
,8$-123,;FF85

)

A

Smee

. x
SBESSSEESE=S ==

PDOS 2.4 DOCUMENTATION

CHAPTER 10 PDOS BASIC COMMAND SUMMARY

PAGE 10-59

(10.74 PRINT continued)

8) Screen commands. If the "3" operator is followed by a
string, then specific letters specify control function. Any
letter may be preceded by a number which repeats the code
that many times. These control 1letters are defined as
follows:

9) PRINT formatting. Numeric output can be formatted to
right justify, float a sign, dollar sign, or angle brackets,
or insert commas or periods. The pound sign is followed by
a string which specifies the format. This format applies
throughout the rest of the PRINT statement unless reset or
changed. Numbers are rounded on the last printed digit.

Format characters are defined as follons:

Character Digit holder

No digit
9 Yes Space
0 Yes 0
$ Yes Floats ¢
S Yes Floats sign
3 Yes Floats ¢ on negative
) No > on negative
E No Print sign
Decimal point
, Prints only if preceded by digit

>

Replaced with period

A digit holder is defined as a position where a digit can
be printed. A floater appears only once and to the left of
the first digit. If there are not enough digit holders to
handle the edited number, the format is replaced wWith
asterisks. A1l non-formatting characters remain in the
format mask and are printed.

LE;?ER VALUE DEFINITION
c <esc)* CLEAR SCREEN
u >0B UP CURSOR
D Y0A DOWN CURSOR
R »0C RIGHT CURSOR
L 08 LEFT CURSOR
B >0D BEGINNING OF LINE
H YIE HOME CURSOR
S <esc)Y CLEAR TO END OF SCREEN
E <esc>T CLEAR TO END OF LINE
H <esc>' RESET WRITE PROTECT
P <esc>& SET WRITE PROTECT
(<esc>) START HRITE PROTECT
) <esc>(END WRITE PROTECT
z <esc>+ CLEAR UNPROTECTED
N >09 SKIP TO NEXT FIELD
,@"C2DBR" ; "HELLO"
HELLO

PRINT #<string>

LIST

10 DIM FORMAT[10]
20 INPUT $FORMAT[O];
30 PRINT #$FORMAT[0],543.34,-12345.67,-0.05

40 GOTO 20

: 99999

: 00000

: 990

: 000-00-0000
¢ $$$$$.00

¢ $$$$0.00
€€<<<0.00>
:+ 99999,00E

: 999,999.00E
: 999,990.99E
: §SS,550.00
: 0~0~0~0~0+0

-

543 12346
00543 12346 00000
543 R 0
000-00-0543 000-01-2346 000-00-0000
$543.34 12345.67 $.05
$543.34 12345.67 $0.05
543.34 €12345.67> <0.05)
543.34 12345,67- .05-
543.34 12,345.67- .05-
543.34 12,345.67~ 0.05-
543.34 -12,345.67 -0.05

0.0.0.5.4.3 0.1.2.3.4.6 0.0.0.0.0.0

SEonanglanIsiTaRsSIIn

POOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-60

SREsroIstnssnes

10.75 Statement: PURGE

Format: PURGE <line #1> TO <line 2>
Definition: Delete program segment

The PURGE statement deletes program statements from <line
81> up to and including <line #2>. The given line numbers
need not exist in the program.

PURGE is used in connection With the LOAD command to do
program chaining and overlays.

10.76 Statement: READ

Format: READ <var),...
Definition: Read program data from DATA statements

The READ statement reads data sequentially from the program
DATA statements. Either numeric or string data can be read
but the type must be the same for both the READ variable and
the DATA value. READ variables ere separated by commas.

A Data List Pointer is maintained by the system and
indicates where the next data item is located. This pointer
is set to the first data item when the program is RUN and
thereafter adjusted by a READ or RESTORE statement.

The READ statement translates ASCIL literals within strings
to - their one byte -equivalent. An ASCII literal is a hex
number enclosed in angle brackets.

LIST
10 REM
20 REM
30 REM
40 REM
50 REM
60 REM
PURGE 20 TO 45
LIST
10 REM
50 REM
60 REM

LIST

10 READ A,B,$C

20 PRINT ¢C,B,A

30 DATA 456,23

40 DATA "HELLO"
RUN
HELLO 23 458

STOP AT 40

990 DATA "HR:MN:SC<D»"

Fﬂlk

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-61

10.77 Statement: REM

Format: REM <characters>
Definition: Program remark for documentation

The REMark statement is used to enter ASCII documentation
in a program. Once a REM statement is encountered, BASIC
ignores the rest of the program line and moves to the next
line.

Remarks are added at the end of any line by using an
exclamation point folloned by a string of characters.

10.78 Statement: RENAME

Format: RENAME ¢string1> T0 <string2)
Definition: Rename a PDOS file

The RENAME statement renames the file specified by
(string? to <string2>. This command alters the file
directory level of the file in <string1> by specifying the
new directory level in (string2>.

LIST

10 REM PROGRAM BEGINNING
20 PRINT 4*ATN 1 !PRINT PI
RUN

3.14159265

STOP AT 20

RENAME "OLDFILE" TO "NEWFILE"
RENAME "FILE" TO "265"

o 5 e e S e S R - SSESIEIREssssThIERennss
POOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY * PAGE 10-62
= > 3 e]
10.79 Statement: RESET
Format: RESET (<exp>) :
Definition: Close all PDOS files by task or disk RESET 0 (Disk 0 could be safely removed)
__ : RESET (A1l current task files ere closed)
*The RESET statement closes all open ¥i1es either by task or
by disk number. I1f no expression follows the RESET
statement, then all files associated With the current user
task are closed. If an expression is given, then it is
evaeluated and all files open on that disk number are closed.
In either case, the SPOOL UNIT and assigned input FILE ID's
are cleered.
10.80 Statement: RESTORE
Format: RESTORE {<exp?)
Definition: Set program DATA pointer LIST
10 DATA 1,2,3
20 GOSUB 1000
The RESTORE statement is used to specify where the next 30 DATA 4,5,6
DATA item is 1located. .Normally, the data pointer moves 40 RESTORE
sequentially through the progrem as items ere READ. 50 GOSUB 1000
However, one may wWish to re-read many items, or even have 60 RESTORE -7
random access into a DATA list. 70 DATA 7,8,8
80 GOSUB 1000
The RESTORE statement has the following modes of operation: 90 RESTORE 3
100 DATA 10,11,12
1) If RESTORE has no argument, or the eargument evaluates 110 DATA 13,14,15
to zero, then the data pointer is set to the first DATA item ' 120 GOSUB 1000
in the program. 130 STOP
1000 FOR I=1T0 4
2) 1f RESTORE hes a positive argument, then the data 1010 READ X: PRINT X;
pointer is moved forward in the program <(exp> items 1020 NEXT 1
folloning the RESTORE statement. 1030 PRINT
1040 RETURN
3) If RESTORE has a negative argument, then the data . RUN
pointer is moved forward in the program <(exp> items from the 1234
beginning of the program. 1234
78910
A1l DATA statements form a large pool of data, regardless 1 13 14 15
of where they are located in a program. The RESTORE
statement randomly accesses any DATA item. STOP AT 130

f\

\

o o e o o

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY

TTEZTT ==
PAGE 10-63

ZEZTEZTT===T==S==s

10.81 Statement: RETURN

Format: RETURN {<exp>}
Definition: Pop entry from GOSUB stack and return

The RETURN statement is used to exit a subroutine. Any
GOSUB operation places a return address on the GOSUB stack.
The RETURN pops the top item from the stack into the program
counter, and thus continues execution immediately after the
call.

The RETURN has an optional parameter which is used to
adjust its return address.

1f the expression is zero, then the RETURN goes immediately
to the next 1line following the call and not execute any
further statements on the same line as the GOSUB.

1f the expression is nonzero, then a RETURN: SKIP <exp> is
executed. Thus a RETURN -1 repeats the call.

oy

10.82 Variable: RND

X%

"

Format: RND
Definition: Variable with random value between 0 and 1

The RND variable returns a random number between 0 and 1
every time it is accessed. The random numbers are generated
from a seed. This seed is altered wWith the SYS[13]
variable.

Each nen seed is generated by the following Tlinear
congruential sequence:

X[n+1] = (X[n] * A + 13849) mod 2*16

LIST
10 DIM N[10]

20 GOSUB 100: GOSUB 200

30 STOP

100 INPUT "NAME=";$N[0]
110 IF $N[0])="": RETURN O

120 RETURN

200 PRINT TAB 10;$N[0]

210 RETURN -1
RUN
NAME=TOM
TOM
NAME=JOHN
JOHN
NAME=<CR>

STOP AT 30

LIST

IREPEAT AGAIN

10 DEFN FNRND[X]=INT[X*RND]
20 FOR I=1T0 10
30 PRINT I,FNRNDLI]

40 NEXT 1
RUN

W O NNOOOL & WN

=
o

STOP AT 40

DO N BN AN L0

PDO; 2.4'ﬁOCUHéhTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY

PAGE 10-64

10.83 Statement: ROPEN

Format: ROPEN <string>,<var>
Definition: Open for Random access a PDOS file

The ROPEN statement opens a file specified by (string), for
random access. The FILE ID is returned in <var>. All
subsequent access to the file is through the FILE ID.

The END-OF-FILE marker on a random file 1is changed only
when the file has been extended. A1l data transfers are
buffered through a chennel buffer and data movement to and
from the disk is by full sectors.

10.84 Statement: RUN

Format: RUN -, -
RUN <string>
Definition: Begin program execution

The RUN statement enters run mode and begins program
execution at the statement with the smallest line number.
A1l variables are cleared and all system stacks and pointers
are reset.

If the RUN statement has a string argument, BASIC chains to
the specified file. This file need not be a BASIC program,
as chaining to assembly language programs is allowed. A NEW
commend is executed before the new program is loaded.

(FDATA has BASIC numbers O to 100 wWith
squares and cubes.)

LIST

10 ROPEN "FDATA" ,FILID

20 I=INT[100*RND]

30 BINARY 1,FILID;4,1,18,0;3,J,K,L
40 PRINT I,J;K;L

50 GOTO 20
RUN

62 62 3844 238328
1 111

15 15 225 3375

14 14 196 2744

48 48 2304 110592
41 41 1681 68921
35 35 1225 42875
19 19 361 6859

74 74 5476 405224
8 8 64 512

90 90 8100 729000
93 93 8649 804357
LIST

10 INPUT "SELECT PROGRAM, N=",N
20 ON N: GOTO 100,200,300
30 PRINT "TRY AGAIN!"

40 GOTO 10

100 RUN "PROGRM1"

200 RUN "PROGRM2"

300 RUN "PROGRM3"
RUN
SELECT PROGRAM, N=5

TRY AGAIN!
SELECT PROGRAM, N=1

(PROGRM1 is loaded and executed)

6

f‘\

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY

PAGE 10-65

10.85 Command: SAVE

Format: SAVE (string’
Definition: Save user program in PDOS file

The SAVE command saves the current program into the PDOS
file specified by <string>, in ASCII text format. This is
equivalent to a LIST to the file. The progrem is stored as
ASCI1 charecters in infix order.

A SAVEd program is given the PDOS type 'EX' and is executed

again from PDOS simply by entering the file name. The
program format is compatible with the LOAD statement.

10.86 Command: SAVEB

Format: SAVEB <(string>
Definition: Save user program as tokens in PDOS file

The SAVEB command saves the current program into the PDOS
file specified by <string>. The format, however, is in
untranslated binary pseudo source tokens. The file is typed
'BX' and can only be run by RUN or PDOS. It cannot be
LOADed.

This format has many advantages. First, it requires less
disk storage thaen the ASCII format. Second, the load time
is dramatically reduced! Third, the file is compatible with
the standalone BASIC interpreter run module and is burned
directly into EPROM's.

SAVE "PRGM"
*READY

SAVEB "PROGRM"
*READY

o 0 4 13 e o 2 5 0 . s e - oo o 2 o o e 0 o o 2 e e e

POOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY o .PAGE 10-66

10.87 Function: SGN

Format: SGN <exp>

Definition: Returns signed value of <exp>: -1=negsative, LIST
O=zero, 1=positive 10 INPUT "N=";N;
! 20 PRINT TAB 10;"SGN[N]=";SGN[N]
! 30 GOTO 10
The SGN function returns a one, negative one, or zero, RUN
depending on the sign of the ergument. If the expression N=12 SGN[N]= 1
evaluates to @ positive number, a one is returned. If the N=0 SGN[N]= 0
expression 1is zero, a zero is returned. Finally, if the N=-300 SGN[N]= -1
expression is negative, a negative one is returned. N=

10.88 Function: SIN

Format: SIN <exp?
Definition: Returns sine value of radian <exp’ LIST
10 FOR I=0 TO 7 STEP ATN 1/2
20 PRINT SIN I, TAB SIN[1]*14+30;"*"
The SIN function returns the sine of the expression. <(exp’ ' 30 NEXT I
is given in radians. To obtain degrees, multiply the 40 STOP
expression by 0.01745328. RUN .
0 *
0.38268343 *
0.70710678 *
0.92387953 *
1 ®
0.92387953 *
0.70710678 *
0.38268343 *
0 *
-0.38268343 *
-0.70710678 *
-0.92387953 *
..1 *»
-0.92387953 *
-0.70710678 *
-0.38268343 ®
~2.2856095E-11 Co
0.38268343 *

STOP AT 40

e

PDOS 2.4 DOCUMENTATION

CHAPTER 10 PDOS BASIC COMMAND SUMMARY

PAGE 10-67

10.89 Command: SIZE

Format: SIZE
Definition: List user program size and availsble memory

The SIZE command 1ists to the user console size psarameters
pertaining to BASIC memory usage. These parameters are
defined as follows:

PRGM: Program size. This value is the sum of
the progrem tokens and statement line
number table in Dbytes. It also
represents the size of the EPROM module.
(Add 12 to this value for
initialization peremeters when burning
EPROMs.)

VNAM: Variable names. This value is the
number of bytes required to store the
variable names.

VARS: Variable storage. This value is the
sum of the variable neme table, variable
definition table, and variable storage
in bytes. (This number is used in the
approximation of the RAM requirements
for a run module.)

FREE: Available storage. A available
storage is listed as FREE memory in
bytes. This memory must be shared by
nen variasble names and definitions,
program lines, and variable storage.

The SYS function monitors the memory partition pointers and
can adjust the size of the GOSUB, FOR/NEXT, and EXTERNAL
tables. The SYS values are defined as follows:

SYS[20] = BUS = Beginning of User Storage
SYS[21] = SLT = Statement Line Table
SYS[22] = WNT = Variable Name Table
SYS[23] = VDT = Variable Definition Table
SYS[24] = NVD = Next Variable Definition
SYS[Z5] = NVS = Next Variable Storage
SYS[26] = GSS = GOSUB Stack

SYS[27] = FNS = FOR/NEXT Stack

SYS[28] = EUS = End User Storage

SYS[35] = EXT = EXTERNAL Teble

SYS[29] = EUM = End User Hemory

PRGM= A+B Program size
VNAM= C Variable names
VARS= D+G Veriable Size
FREE= E+F Available storage
! !
BUS |-
i A | Program storage
SLT e !
! B | Statement numbers
UNT
{ C |} variable names
voT =
{ D | Veriable definitions
NVD jom————— ! End of definitions
i E
R10=> |} ! Heap pointer
! 1
{ F | FREE space
NVS | H
{ G |} Veriable storage
658 ==
| 20x4b | GOSUB stack
FNS {1
! 8x18b | FOR/NEXT stack
EXT =i
! 20x2b | EXTERNAL table
EUS A ! End User Storage
EUM
SIZE
PRGM:0
VNAM:0
VARS:0
FREE:31662
N=6
DIM A(10)
SIZE
PRGM:0
VNAM:2
VARS:80
FREE:31580
10 X=100
SIZE
PRGM: 10
VNAM:2
VARS:82

FREE: 31568

PDOS 2.4 WATICN CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-68

10.90 statement: SKIP

Format: SKIP <exp?
Definition: Conditional program transfer

" The SKIP statement causes program execution to skip the
number of program lines specified by <exp>.

1f the expression is zero, execution continues on the next
line. A value of -1 would execute the current line again.

The SKIP statement is a very fast transfer, but caution
must be wused. Since these transfers do not appear in TRACE
2, they cannot be interrupted with the ESCAPE key, and cause
problems when statements are added or deleted.

10.91 Statement: SOPEN

Format: SOPEN <¢string>,<var>
Definition: Open a PDOS file for shared access

The SOPEN statement opens a file for shared random access
and returns the FILE ID in <var>. A1l subsequent access to
the file is with the FILE ID. A file opened for shared
access can be opened by another task. This does not meke a
new entry in the file slot table and hence, concurrent
accesses need to use the LOCK and UNLOCK statements to
ensure data integrity. In addition, the same pointer is
used by all tasks accessing the file. Hence, a LOCK and
POSITION should be used to access data.

The END-OF-FILE marker on a shered file is changed only
when the file has been extended. All data transfers are
buffered through a channel buffer; data moveméent to and from
the disk is by full sectors.

LIST
10 REM MAKE NONSENSE

SKIP INT[5*RND]
30 PRINT “EATS ";: GOTO 10
40 PRINT "THE CAT ";: GOTO 10
50 PRINT "LICKS “;: GOTO 10
60 PRINT “TODAY.": GOTO 10
70 PRINT "THE DOG “;: GOTO 10

LICKS TODAY.

" THE CAT EATS LICKS TODAY.

THE DOG TODAY.

THE CAT TODAY.

EATS TODAY.

THE CAT LICKS THE CAT THE CAT EATS THE DOG TODAY.
EATS THE DOG TODAY.

(FDATA has BASIC numbers 0 to 100 with
squares and cubes.)

LIST .

10 SOPEN "FDATA",FILID

20 I=INT[100*RND]

30 BINARY O,FILID;4,1,18,0;3,J,K,L !LOCK
40 PRINT I,J;K;L

50 GOTO 20
RUN

62 62 3844 238328
1 111

16 15 225 3375

14 14 196 2744
48 48 2304 110592
41 41 1681 68921

35 1225 42875

19 19 361 6859

74 74 5476 405224
8 8 64 512

90 90 8100 729000

93 93 8649 804357

f!'k

-~

PDOS 2.4 DOCUMENTATION

CHAPTER 10 PDOS BASIC COMMAND SUMMARY

PAGE 10-69

10.92 statement: SPOOL

Format: SPOOL <exp1> TO <exp2>
SPOOL <exp1> TO <(string>
SPOOL <exp?

Definition: " Send console outputs to PDOS file

The SPOOL statement specifies a UNIT number with <exp1> and
a FILE ID with <exp2> or file name With <string>. When that
particular UNIT is selected, all console outputs are written
to the selected file. The SPOOL statement is useful in
saving output when other peripherals are busy.

1f only one expression follons the SPOOL statement, then

only the SPOOL UNIT is changed. Thus, a SPOOL O temporarily
disables spooling.

10.93 Function: SQR

Format: SQR <exp?
Definition: Returns square root of <exp>

The SQR function returns the square root value of a
non-negative <exp>. Given & good first approximation to the
square root, the following Nexton formula requires only four
iterations to achieve eleven digits of accuracy:

X[i+1] = (X[i] + N/ X[i1) / 2

where N is the <exp> and X[i] is the approximate square
root.

LIST

10 SPOOL 3 TO “"TEMP"

20 UNIT 3

30 FOR I=1T0 5

40 PRINT I;" SQUARED =";I*L
50 NEXT I

60 UNIT 1

RUN
1 SQUARED = 1
2 SQUARED = 4
3 SQUARED = 9
4 SQUARED = 16
5 SQUARED = 25

STOP AT 60

DISPLAY "“TEMP"
1 SQUARED = 1
2 SQUARED = 4
3 SQUARED = 9
4 SQUARED = 16
5 SQUARED = 25

*READY

LIST

10 FOR I=1T0 10

20 PRINT "THE SQUARE ROOT OF";I;" 1S";SQR[I1]

30 NEXT 1
RUN

THE SQUARE ROOT OF 1 IS 1

THE SQUARE ROOT OF 2 IS 1.4142136
THE SQUARE ROOT OF 3 IS 1.7320508
THE SQUARE ROOT OF 4 IS 2

THE SQUARE ROOT OF 5 1S 2.236068
THE SQUARE ROOT OF 6 1S 2.4494897
THE SQUARE ROOT OF 7 IS 2.6457513
THE SQUARE ROOT OF 8 IS 2.8284271
THE SQUARE ROOT OF 9 IS 3

THE SQUARE ROOT OF 10 IS 3.1622777

STOP AT 30

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-70

10.94 Function: SRH

Format: SRH[¢string1>,<string2)]
Definition: Returns position of <string1> in (string2»

The SRH function searches for (string?> in <(string2> and
returns the number of the start character of the first
occurrence. If the string was not found, a zero is
returned.

10.95 Command: STACK

Format: STACK
Definition: List user stack entries

The STACK command lists to the user console all entries in
the GOSUB stack. The entries are listed in order from the
first call to last call.

LIST
10
20
30
40
50
60
70

RUN

:ABC

:PQR

DIM A[10],B[10]
$B{0]="ABCDEFGHIJKLMNOPQRSTUVHXYZ"

INPUT $A[O];

I=SRH[$A[0],$B[0]]

IF I: PRINT " KWAS FOUND AT POSITION";IL
ELSE PRINT " WAS NOT FOUND"

GOTO 30

WAS FOUND AT POSITION 1
NAS FOUND AT POSITION 16

:STV HAS NOT FOUND

LIST

10
20
30
40
50
60
RUN

GOSuUB 20
GOSuB 30
GOSuB 40
GOsuB 50
GOsuB 60
sT0P

STOP AT 60
STACK

#10
#20
#30
#40
#50

*READY

-~

/

~

POOS 2.4 DOCUﬂENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-71

10.96 Statement: STOP

Formet: STOP
Definition:_ Stop program execution

The STOP statement halts program execution and saves the
next line number for the continue command (“C).

10.97 Statement: SWAP

Format: SHAP
Definition: Swap to next task

The SHAP command immediately sweps to the next task. This
is useful when executing in a tight loop waiting for some
event to occur. Hasted CPU cycles can then be used by other
tasks.

LIST
10 PRINT "LINE 10"
20 STOP
30 PRINT "LINE 30"
RUN
LINE 10

STOP AT 20
CONT
LINE 30

STOP' AT 30

100 REM WALT FOR EVENT 30
110 IF EVF[30]: SWAP : GOTO 100

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY ~ PAGE 10-72

10.98 Function: SYS

Format: SYS <exp>

Definition: Returns value of <exp> system variable

The SYS function returns system parameters as selected by
<exp>. SYS[0] through SYS[36] are predefined paremeters,
while SYS[16] returns elements of the task control block.

Predefined variables are as follows:

SYS[0] = HELP FLAG

SYS[1] = LAST ERROR #

SYS[2] = LAST ERROR LINE #

SYS[3] = DIGITS

SYS[4] = AUTO INCREMENT

SYS[5] = OUTPUT UNIT #

SYS[6] = OUTPUT COLUMN COUNTER

SYS[7] = LAST RECORD LENGTH

SYS[8] = COM[] SIZE

SYS[9] = (RS) TASK CONTROL BLOCK POINTER
SYS[10] = INPUT PORT #
SYS[11] = ASSIGNED INPUT MESSAGE POINTER
SYS[12] = ASSIGNED INPUT FILE ID
SYS[13] = RANDOM SEED
SYS[14] = FOR/NEXT STACK SIZE
SYS(15] = GOSUB STACK SIZE
SYS[16] = UNIT 1 CRU BASE
SYS[17] = UNIT 2 CRU BASE
SYS[18) = CURRENT ‘BASE‘ CRU BASE
SYS[18] = SYSTEM DISK/DIRECTORY LEVEL
SYS[20] = BEGINNING OF USER PROGRAM
SYS[21] = STATEMENT DEFINITION TABLE
SYS[22] = VARIABLE NAME TABLE
SYS[23] = VARIABLE DEFINITION TABLE
SYS[24] = NEXT VARIABLE DEFINITION
SYS[25] = NEXT VARIABLE STORAGE
SYS[26] = GOSUB STACK
SYS[27] = FOR/NEXT STACK
SYS[28] = END USER STORAGE
SYS[29] = END USER MEMORY
SYS[30] = BASIC VARIABLE LENGTH
SYS[31] = GOSUB STACK POINTER
SYS[32] = USER FUNCTION LINK

SYS[33] = REMARK FLAG

SYS[34] = EXTERNAL TABLE SIZE
SYS[35] = EXTERNAL TABLE ADDRESS
SYS[36] = CURRENT TASK NUMBER

Read Only

Read Only
Read Only
Read Only
Read Only
Read Only
Read Only
Read Only
Read Only

Read Only
Read Only
Read Only
Read Only

Read Only
Read Only

LIST

10 ERROR 100

20 I=10/0

100 PRINT "ERROR";SYS[1];" AT LINE";SYS[2]
RUN

ERROR 28 AT LINE 20

LIST
10 FOR I=0 TO 36
20 PRINT “SYS[*:I:" 1=";#SYS[1]
30 NEXT I -

RUN

SYS[0]=0000

SYS[1]=0000

SYS[2]=0000

SYS[3]=0008

SYS[4]=000A

SYS[5]=0003

SYS[6]=0009

SYS[7]=0000

SYS[8]=000A

SYS[9 1=6020

SYS[10 1=0001

SYS[11]=0000

SYS[12 1=0000

SYS[13]=0000

SYS[14]=0008

SYS[15]=0014

SYS[16 1=0080

SYS[17]=0000

SYS[18]=0000

SYS[19 1=0401

SYS[20]=62F6

SYS[21 1=631A

SYS[22 1=6328

SYS[23]=6334

SYS[24]=633A

SYS[25]=DEBO

SYS[26]=DEF6

SYS[27 1=DF46

SYS[28 J=EC00

SYS[29]=E000

SYS[30]=0006

SYS[31]=DEF6

SYS[32 1=0000

SYS[33]=0000

. SYS[34]=0014

SYS[35]=DFD8
SYS[36 }=0000

STOP AT 30

PDOS- 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-73

-

10.99 Function: TAN

Format: TAN <exp>
Definition: Returns tangent of radian (exp> LIST
10 FOR I=0 TO 4*ATN 1 STEP 0.2
20 PRINT TAN I;: X=TAN[1]*4+40
The TAN function returns the tangent of <exp’. The 30 IF X>10: PRINT TAB X;"*";
argumerit is in radiens. To convert degrees to radians, 40 PRINT
multiply the number of degrees by 0.0174533. 50 NEXT L
RUN
0
0.20271004
0.42279322 .
0.68413681 *
1.0296386 *
1.6574077 *
2.5721516
5.7978837
-34.232533
-4.2862617 x
-2.1850339 *
-1.3738231 ¥
-0.91601429 »
(’* -0.60159661 *
' -0.35552983 *
-0.14254654 *

STOP AT 50

10.100 Statement: THEN

Format: THEN <(statement>
Definition: A TRUE precondition to a line execution LIST
10 IF 12
20 THEN PRINT “YES"
The THEN statement precedes any BASIC statement and 30 ELSE PRINT "NO"
continues execution of the program line only if the ELSE RUN
FLAG is TRUE. The ELSE FLAG is set FALSE whenever an IF YES
statement 1is executed. If the IF statement evaluates TRUE,
the ELSE FLAG is set TRUE. The flag remains set or reset STOP AT 30

until another IF statement is executed. Hence, multiple
line blocks can be executed or ignored, depending upon hon
the ELSE FLAG is set.

Program lines beginning with THEN are indented two spaces,
when listed.

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY

PAGE 10-74

10.101 Function: TIC

Format: TIC <exp?
Definition: Returns current tic value less <(exp)

The TIC function returns the value of the two word timer
less the value of <¢exp>. The timer is incremented 125 times
a second. Hence, one tic equals 1/125 of a second. To mark
elapsed time, a variable is assigned TIC[0]. At any time
thereafter, TIC of the variable gives the elapsed time in
1/125 second intervals.

10.102 Statement: TIME

Format: TIME
TIME <exp1’{,<exp2>{,<exp3’}}
TIME <string’
Definition: Set or read system time

The TIME statement reads, sets, or displays the system
time.

TIME without any perameters displays to the user console an
eight character string in the format "HR:MN:SC".

If the parameter of TIME is a string variable, then the
same eight character string is stored in the variable.

It an expression <exp1> follows the TIME statement, it is
evaluated and used to set the hours of the system clock. A
subsequent expression <(exp2), sets the minutes, while
expression <(exp3> sets the seconds.

LIST

10 T=TIC O

20 FOR I=1 TO 1000
30 NEXT I

40 T=TIC T

50 PRINT "FOR LOOP TIME =";T/125;“ SECONDS"

RUN
FOR LOOP TIME = 1,12 SECONDS

STOP AT 50

TIME

19:05:50

TIME 20,30,0
TIME $A[O]
;$A[0];20:30:05

PDOS 2.4 DOCUMENTATION

CHAPTER 10 PDOS BASIC COMMAND SUMMARY

PAGE 10-75

10.103 sStatement: TRACE

Format: TRACE <exp> {,<var)}
Definition: Set trace options

The TRACE statement is used to monitor program assignments
and transfers for debugging purposes.

TRACE 1 is the variable trace mode. A1l program numeric
assignments are output to the user console after the
assignment has been made. If an optional variable follows
the trace type, then only a single variable is traced.
Otherwise, all numeric assignments are shown in the trace.
The line number of the assignment is first listed followed
by the variable name, an equal sign, and finally the new
value. If the veriable is a dimensioned variable, then a
left bracket follows the variable name.

TRACE 2 is the transfer trace mode. It outputs to the user
console any program transfer due to the execution of a
GOSUB, ERROR, INPUT help, POP, GOTO, or RETURN statement.
The only transfer not 1listed is the SKIP statement. The
first number indicates the point of origin, while the number
following the ‘=>' is the destination of the transfer.

TRACE 4 is the line trace mode. Every line is displayed to
the console before it is executed. A1l other trace outputs
follon the listed line.

Any combination of the above trace modes are put in effect
at the same time by adding the trace values. For example,
transfer and variable trace Would be active Hith TRACE 3.
The variable option 1is only for TRACE 1 and resets every
time a TRACE command is executed.

LIST

10 DIM TEMP[10]

20 I=INT[10*RND]: GOSUB 100

30 IF FLAG¢<2: GOTO 20

40 STOP

100 COUNT=COUNT+1: IF TEMP[I]<>0: RETURN -1
110 TEMP[I1]J=COUNT: COUNT=0: FLAG=FLAGH1

120 RETURN
TRACE 1
RUN
20 I=7
100 COUNT=1
110 TEMP[=1
110 COUNT=0
110 FLAG=1
20 I=7
100 COUNT=1
20 I=4
100 COUNT=2
110 TEMP[=2
110 COUNT=0
110 FLAG=2
STOP AT 40

TRACE 2
RUN

20 => 100
120 => 20
30 = 20
20 => 100
120 => 20
STOP AT 40

TRACE 4
RUN

10 DIM TEMP[10]

TRACE 3

RUN

20 1=3

20 => 100
100 COUNT=1
110 TEMP[=1
110 COUNT=0
110 FLAG=1
120 = 20
30 = 20
20 I=6

20 => 100
100 COUNT=1
110 TEMP[=1
110 COUNT=0
110 FLAG=2
120 => 20
STOP AT 40

TRACE 1,FLAG
RUN

110 FLAG=1
110 FLAG=2
STOP AT 40

20 I=INT[10*RND]: GOSUB 100
100 COUNT=COUNT+1: IF TEMP[I]<>0: RETURN -1
110 TEMP[I]=COUNT: COUNT=0: FLAG=FLAG+1

120 RETURN

30 IF FLAG<2: GOTO 20

20 I=INT[10*RND]: GOSUB 100
100 COUNT=COUNT+1: IF TEMP[I1]¢<>0: RETURN -1
110 TEMP[I1]=COUNT: COUNT=0: FLAG=FLAG+1

120 RETURN

30 IF FLAG¢<2: GOTO 20

40 STOP
STOP AT 40

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-76

10.104 Function: TSK

Format: TSK <exp>

Definition: Return the task <exp> status LT

TASK PAGE TIME TB WS PC SR ...
The TSK function returns the status of task <exp>. If *0/0 0O 3 Y6020 »619A >04C2 >1006...
TSK[¢<exp>] is zero, then task <exp> is not in the task list. 170 O -97 >DC20 >DDYA >03F0 >C605...
1t TSK[<exp>] is positive, then task <exp> is executing end .EX
TSK[<exp>] 1is its task time. If TSK[¢exp>] is negative, *READY
then task <exp> is suspended pending event -TSK[<exp’]. LIST

10 FOR I=0TO 5

20 PRINT "TASK";I;" STATUS =";TSK[1]
30 NEXT I
RUN
TASK 0 STATUS = 3
TASK 1 STATUS = -97
TASK 2 STATUS = 0
TASK 3 STATUS = 0

TASK 4 STATUS =0
TASK 5 STATUS = 0

10.105 Statement: UNIT

: STOP AT 30
Format: UNIT <exp>
Definition: Direct console outputs BAUD -2,1200 Set UNIT 2 to >0180 at 1200 baud
UNIT 3 Send output to CRT and AUX port

The UNIT statement assigns ASCII output to the device
indicated by <exp>. UNIT 1 is the system console CRT. UNIT
2 is the auxiliary output number.

Each bit of the UNIT variable selects a different output
device. Various bits are assigned to different devices or
files with the SPOOL command.

~

9905_?74 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY PAGE 10-77

10.106 Statement: WI_@]_:_T_

Format: HWAIT <exp>
Definition: Suspend task pending event <exp’

The WAIT command suspends the user task until the event
specified by <exp> occurs. There are 127 events defined in
PDOS. The first 15 (1-15) are hardware events, while events
16 through 127 are software events. (Event 0 is ignored.)

A tesk that has been suspended does not receive any CPU
cycles until the event occurs. Khen the event occurs, the
task begins executing the next statement after the HWAIT
statement. This is immediate, if it Was a hardware event.
Otherwise, the task continues execution during the normal
swapping functions of PDOS.

A suspended task is indicated in the LIST TASK (LT} command
by e minus event number being listed for the task time
parameter. HKhen the event does occur, the time parameter is
restored.

Hardware events are enabled by overwriting the appropriate
interrupt vector with the workspace and address of the event
processor. Also, the interrupt mask bit on.the 9901 is set
to one, enabiing the interrupt. Software events are
indicated by a single bit being set or reset in an event

list.

1f more than one task is suspended on the same event, only
the lowest numbered task is awakened for all hardware
events. For software events, however, all tasks suspended
on the event begin executing. For a hardnere event, further
interrupts on the event level are disabled at the system
TMS9901 by setting the interrupt mask bit to zero. The
system interrupt mask is not affected. Software event flags
are not reset and must be processed by the event routine.

See 5.2.16 XSUL - SUSPEND UNTIL INTERRUPT

100. BASE 00180H !POINT TO AUX 9902
110 HWALIT 5 !SUSPEND TASK

120 CR=CRF[8] !READ CHARACTER

130 CRB[18]=1 !ACKNOWLEDGE INTERRUPT

1-15 Hardware events
16-127 Software events

LT
TASK PAGE TIME 8 HS PC SR ...

*0/0 O 3 Y42A2 >441C >08654 >D40F ...
70 0 -30 >4AA2 >4A82 >1040 >DOCF ...
2/0 0 -5 »52A2 »5282 »292E >CAOF ...

200 MWAIT 30 !SUSPEND UPON EVENT 30
210 EVENT -30 !ACKNOWLEDGE EVENT

PDOS 2.4 DOCUMENTATION CHAPTER 10 PDOS BASIC COMMAND SUMMARY o PAGE ‘iDr-?B

